
Corso di Laurea Specialistica in Ingegneria Informatica

Computer Viruses and

the Simulation Environment WiCE

Relatore Studente
Prof. Alberto Pettorossi Fernando Iazeolla

Anno Accademico 2006/2007

1

.

Abstract

There has been considerable interest in computer viruses since they �rst appeared in
1981, and especially in the past few years as they have reached epidemic numbers in
many personal computer environments. Viruses have been written about as a security
problem, as a social problem, and as a possible means of performing useful tasks in a
distributed computing environment.
However, only recently some scientists have begun to ask if computer viruses are not a
form of arti�cial life; a self-replicating organism. Simply because computer viruses do
not exist as organic molecules may not be su�cient reason to dismiss the classi�cation
of this form of "vandal-ware" as a form of life.
This thesis begins with a formal description of what a computer virus is. An abstract
theory is presented. It covers an operational semantic of computer viruses in term
of statements and machine status, and a denotational semantic, �rst presented by
Adleman, in which is computer viruses are seen in a much higher level abstraction.
Real computer viruses are classi�ed according to their infection methods, environ-
ments upon which they depend on, and in-memory strategies. Then we discuss ad-
vanced techniques used by computer viruses such as anti-disassembling, anti-debugging,
encrypting, and polymorphism.
The thesis ends with the implementation of a simulating environment WiCE. The
WiCE environment is able to run two or more self-modifying codes in a "sand-box"
(a protected environment) that separates the viral codes from the real machine.

2

.

Dedicato ai miei genitori...

3

Life, Love and Liberation.

4

November 6, 2007

Acknowledgments

Prof. A.D.Pettorossi.
Alberto, Silvia, Guglielmo, Barbara, Beatrice, Gabriele, Mauro, Paola, Raymond,
Raoul, Eva, Claudia, Alessanra, Rosa, Mario.
and... (in alphabetical order):
Francesco Agrusti, Alessandro Alicata, Carlo Alicata, Viviana Bessone, Antonio Cam-
pagna, Pamela Campi, Francesca Cartia, Marco Carta, Francesco Caputo, Daniela
Caruso, Gianni Ceneri, Luigi Ceneri, Andrea Ciarletta, Alessio Ciancio, Giulio Com-
erci, Luca Conticelli, Fabio D'Andria, Marco Dell'aquila, Luigi Del Prete, Mauro
Di Gennaro, Daniele Di Pinto, Filippo Ercoli, Marco Lattanzi, Valentina Fornaiolo,
Laura Frezza, Stefano Gallo, Nazzareno Iannucci, Daria Ludovci, Ilenia Miduri, Elena
Macri', Michele Martone, Alessandro Monterosso, Giuliano Monterosso, Alessia Para-
disi, Francesco Pedini, Flavio Pierri, Roberto Pizzotti, Alessandro Polselli, Francesco
Pozzi, Luciano Raguzzi, Riccardo Raguzzi, Veronica Rao, Filippo Restanti, Pierpaolo
Rospo, Silvia Rossi, Sebastiano Russo, Massimiliano Saccone, Paolo Salvatore, Simona
Sgro', Fabrizio Sisti, Carlo Spaccasassi, Stefano Tonna, Giuseppe Valletta, Lidia Vas-
tola, Maria Clara Vendittelli, Chiara Visca, Federico Zannini, Pierluigi Zappalenti,
Massimiliano Zenti... and all those i forgot who supported and encouraged me.
Special thanks to the in�nite monkey theorem && "cat /dev/random".
Thanks also to Daniel (Life, Love and Liberation), Daniele Silvestri (Il latitante) and
Niccolo' Fabi (la cura del tempo, dischi volanti) whose music i listened to while i was
coding... the soundtrack of my thesis.
Special thanks to the Death Valley (Nevada, USA). To rebirth into a new life, you
�rst have to die. There is no place better in the world to die than the death valley.

5

Contents

I Computer Viruses 11

1 Introduction 12
1.1 Genesis of Computer Viruses . 12

2 An Abstract Theory of Computer Viruses 14
2.1 Turing Machines . 14
2.2 von Neumann's Theory of Self-Reproducing Automata 16
2.3 Computational Domains . 17

2.3.1 Complete Partial Order (CPO) 17
2.3.2 Lifting . 19

2.4 Operational Semantic of IMP . 19
2.5 Basic Virus De�nitions . 21

2.5.1 An Operational Semantic of Computer Viruses 22
2.5.2 A Denotational Semantic of Computer Viruses 24

3 Computer Architecture Dependency 28
3.1 CPU Dependency . 28
3.2 Operating System Dependency . 30
3.3 Operating System Version Dependency 31

3.3.1 runtime method . 31
3.3.2 hard coded method . 32

3.4 File System Dependency . 32
3.4.1 Cluster Viruses in FAT �le system 32
3.4.2 HFS File System . 34
3.4.3 NTFS File System . 34

3.5 File Format Dependency . 35
3.5.1 COM Viruses on DOS . 35
3.5.2 EXE Viruses on DOS . 35
3.5.3 PE (Portable Executable) Viruses on Windows 38
3.5.4 ELF Viruses on UNIX . 45
3.5.5 Mach-O Viruses on Mac OS X 52

3.6 Interpreted Environment Dependency 55

CONTENTS 6

CONTENTS

4 Classi�cation of Infection strategies 57
4.1 Boot Viruses . 57

4.1.1 Replacing the Boot Record without saving it 57
4.1.2 Replacing the Boot Record making a copy of it 58
4.1.3 Boot Viruses that mark sectors as BAD 58

4.2 File Infection Techniques . 58
4.2.1 Overwriting Viruses . 58
4.2.2 Random Overwriting Viruses 59
4.2.3 Appending Viruses . 59
4.2.4 Prepending Viruses . 60
4.2.5 Classic Parasitic Viruses . 60
4.2.6 Cavity Viruses . 61
4.2.7 Compressing Viruses . 61
4.2.8 Crypting Viruses . 61
4.2.9 Entry-Point Obscuring (EPO) Viruses 61

5 Classi�cation of In-Memory strategies 64
5.1 Direct-Action Viruses . 64
5.2 Memory-Resident Viruses . 64
5.3 Stealth Viruses . 65
5.4 Viruses in Processes (in User Mode) 66
5.5 Viruses in Kernel Mode . 66

6 Advanced Virus Techniques 67
6.1 Armored Viruses . 67

6.1.1 Antidisassembly . 67
6.1.2 Antidebugging . 68
6.1.3 Antiheuristics . 69
6.1.4 Antiemulation . 70
6.1.5 Aggressive Retroviruses . 71

6.2 Polymorphic Viruses . 72
6.2.1 Encrypted Viruses . 72
6.2.2 Oligomorphic Viruses . 73
6.2.3 Polymorphic Viruses . 73

II Emulation Environments 77

7 Viruses and Arti�cial Life 78
7.1 Viruses as patterns in space-time . 78
7.2 Self-reproduction of viruses . 79
7.3 Information storage of a self-representation 79
7.4 Virus metabolism . 79

CONTENTS 7

CONTENTS

7.5 Functional interactions with the viruses environment 80
7.6 Interdependence of virus parts . 80
7.7 Virus stability under perturbations 80
7.8 Virus evolution . 80
7.9 Growth . 81
7.10 Other behavior . 81
7.11 Concluding Comments . 82

8 The WiCE Language 84
8.1 The Grammar . 85
8.2 Run-time Variables . 86
8.3 General De�nitions . 86
8.4 Speci�c De�nitions . 87
8.5 Instruction Set . 87

8.5.1 pseudo-instructions . 89
8.5.2 DAT . 90
8.5.3 MOV . 90
8.5.4 ADD . 90
8.5.5 SUB . 90
8.5.6 MUL . 90
8.5.7 DIV . 90
8.5.8 MOD . 90
8.5.9 JMP . 91
8.5.10 JMZ . 91
8.5.11 JMN . 91
8.5.12 DJN . 91
8.5.13 CMP . 91
8.5.14 SLT . 91
8.5.15 SPL . 91
8.5.16 CTIN . 92
8.5.17 CTOUT . 92
8.5.18 CPIN . 92
8.5.19 CPOUT . 92

8.6 Address Modes . 92
8.6.1 Immediate . 93
8.6.2 Direct . 93
8.6.3 Indirect . 93
8.6.4 Predecrement Indirect . 93
8.6.5 Postincrement Indirect . 93

8.7 Modi�ers . 94
8.7.1 A . 94
8.7.2 B . 95
8.7.3 AB . 95

CONTENTS 8

CONTENTS

8.7.4 BA . 95
8.7.5 F . 96
8.7.6 X . 96
8.7.7 I . 96

9 The WiCE environment 97
9.1 Using WiCE . 97
9.2 WiCE Description . 98

10 WiCE Internals 101
10.1 Software Architecture . 101
10.2 the parser . 102
10.3 the compiler . 104
10.4 the initializer . 105
10.5 the scheduler . 106
10.6 the output . 107

A WiCE SourceCode 108
A.1 main.h . 108
A.2 main.c . 111
A.3 init_game.h . 116
A.4 init_game.c . 116
A.5 x11_output.h . 120
A.6 x11_output.c . 120
A.7 txt_output.h . 133
A.8 txt_output.c . 133
A.9 scheduler.h . 135
A.10 scheduler.c . 135
A.11 parse2.h . 137
A.12 parse2.c . 138
A.13 parse.h . 142
A.14 parse.c . 142
A.15 pack.h . 154
A.16 pack.c . 155
A.17 list_util.h . 159
A.18 list_utils.c . 159
A.19 execute.h . 164
A.20 execute.c . 164
A.21 debug_output.h . 179
A.22 debug_output.c . 179

CONTENTS 9

CONTENTS

B Terminology of Malicious Programs 183
B.1 Viruses . 183
B.2 Worms . 183

B.2.1 Mailer and Mass-Media Worms 183
B.2.2 Octopus . 183
B.2.3 Rabbits . 183

B.3 Logic Bombs . 184
B.4 Trojan Horses . 184

B.4.1 Backdoors . 184
B.5 Germs . 184
B.6 Exploits . 185
B.7 Downloaders . 185
B.8 Dialers . 185
B.9 Droppers . 185
B.10 Injectors . 185
B.11 Kits (Virus Generators) . 186
B.12 Spammer Programs . 186
B.13 Flooders . 186
B.14 Keyloggers . 186
B.15 Rootkits . 187
B.16 Joke Programs . 187

CONTENTS 10

Part I

Computer Viruses

11

Chapter 1

Introduction

1.1 Genesis of Computer Viruses

In 1949, John von Neumann devises the theory of self-replicating programs (see 2.2),
providing the theoretical foundation for computers that hold information in their
"memory".
Virus-like programs appeared on microcomputers in the 1980s. However, two fairly
recounted precursors deserve mention here: Creeper from 1971-72 and John Walker's
"infective" version of the popular ANIMAL game for UNIVAC in 1975.
Creeper and its nemesis, Reaper, the �rst "antivirus" for networked TENEX running
on PDP-10s at BBN, was born while they were doing the early development of what
became "the internet".
Even more interestingly, ANIMAL was created on a UNIVAC 110/42 mainframe com-
puter running under the Univac 1100 series operating system, Exec-8. In January of
1975, John Walker (later founder of Autodesk, Inc. and co-author of AutoCAD) cre-
ated a general subroutine called PERVADE, which could be called by any program.
When PERVADE was called ANIMAL, it looked around for all accessible directories
and made a copy of its caller program, ANIMAL in this case, to each directory to
which the user had access.
The �rst virus (Elk Cloner) on microcomputers was written on the apple][, circa
1982. Elk Cloner had a payload that displayed Skrenta's poem after every 50th use of
the infected disk when reset was pressed. On every 50th boot, Elk Cloner hooked the
reset handler; thus only pressing reset triggered the payload of the virus.
The �rst IBM-PC virus appeared in 1986; this was the Brain virus. Brain was a boot
sector virus and remained resident. In 1987, Brain was followed by Alameda (Yale),
Cascade, Jerusalem, Lehigh, and Miami (South African Friday the 13th). These
viruses expanded the target executables to include COM and EXE �les. Cascade
was encrypted to deter disassembly and detection. Variable encryption appeared in
1989 with the 1260 virus. Stealth viruses, which employ various techniques to avoid
detection, also �rst appeared in 1989, such as Zero Bug, Dark Avenger and Frodo

CAP. 1 Introduction 12

� 1.1 Genesis of Computer Viruses

(4096 or 4K). In 1990, self-modifying viruses, such as Whale were introduced. The
year 1991 brought the GP1 virus, which is "network-sensitive" and attempts to steal
Novell NetWare passwords. Since their inception, viruses have become increasingly
complex. Examples from the IBM-PC family of viruses indicate that the most com-
monly detected viruses vary according to continent, but Stoned, Brain, Cascade, and
members of the Jerusalem family, have spread widely and continue to appear. This
implies that highly survivable viruses tend to be benign, replicate many times before
activation, or are somewhat innovative, utilizing some technique never used before in
a virus.
Internet and e-mail revolutionized communications. However, as expected, virus cre-
ators didn't take long to realize that along with this new means of communication, an
excellent way of spreading their creations far and wide had also dawned. Therefore,
they quickly changed their aim from infecting a few computers while drawing as much
attention to themselves as possible, to damaging as many computers as possible, as
quickly as possible. This change in strategy resulted in the �rst global virus epidemic,
which was caused by the Melissa worm.

CAP. 1 Introduction 13

Chapter 2

An Abstract Theory of Computer

Viruses

2.1 Turing Machines

Alan Turing in 1936 introduced an abstract model for computation called Turing Ma-
chine. There are various variants of this model, which can be proved to be equivalent
in the sense that they are all capable to compute the same set of functions from N to
N.
Informally, we can say that a Turing Machine (TM, for short) M consist of: (i) a
�nite automaton FA, also called control, (ii) a one-way in�nite tape divided into cells
{ci|i ∈ N, i > 0}, and (iii) a tape head which is on a cell at a time, called the scanned
cell. Each cell contains exactly one of the symbols of the Tape alphabet Γ. The states
of the FA are also called internal states (or simply states), of the Turing Machine M.
We assume a left-to-right direction on the tape by stipulating that for i > 0 the cell
ci is immediately to the left of the cell ci+1.
A Turing Machine behaves as follows. It starts on a tape containing in its cells
c1c2 . . . cn a sequence of n input symbols from the input alphabet Σ, while all other cells
contain the symbol B (called blank) belonging to Γ. We assume that: Σ ⊆ Γ− {B}.
The Turing Machine M starts with its tape head on the leftmost cell, that is c1, and
the FA in its initial state q0.
A move (or a transition) of the TM is given by a quintuple:

qi, Xh → qi, Xk, m

where: (i) qi is the current state of the FA, (ii) Xh is the symbol on the scanned cell
(that is the symbol which is read by the tape head), (iii) qj is the new state of the
FA, (iv) Xk is the symbol which ,after the move, replaces Xh on the scanned cell (Xk

is also called the printed symbol), and (v) m is either L or R and denotes that the
tape head, after the move, will be on the cell to the left or to the right, respectively,
of the cell scanned before the move.

CAP. 2 An Abstract Theory of Computer Viruses 14

� 2.1 Turing Machines

No two quintuples have the same �rst two components, and we refer to this property
by saying that the TM is deterministic.

De�nition 2.1.1. A Turing Machine (or a TM, for short) is a septuple 〈Q, Σ, Γ, δ, q0, B, F 〉,
where:

• Q is the set of states,

• Σ is the input alphabet,

• Γ is the tape alphabet,

• δ is a partial function from Q× Γ to Q× (Γ− {B})× {L, R}, called transition
function, which de�nes the set of quintuples of the Turing Machine,

• q0 is the initial state,

• B is the blank symbol, and

• F is the set of the �nal states.

We assume that Q and Γ are disjoint, and Σ ⊆ Γ− {B}.

Figure 2.1: a Turing Machine in the con�guration α1 q α2, that is, b b a q a b d
.

De�nition 2.1.2. A con�guration of a TM whose tape head is reading the cell ch for
some h ≥ 1, is the triple α1 q α2, where:

• α1 is the (possibly empty sequence of (Γ− {B})h−1 contained in the cells c1c2 . . . ch−1,

• q is the current state of the TM, and

CAP. 2 An Abstract Theory of Computer Viruses 15

� 2.2 von Neumann's Theory of Self-Reproducing Automata

• α2 is the non-empty sequence of Γk−h+1 contained in the cells ch . . . ck, if the
tape head is reading a non-blank symbol (that i,h ≤ k). Otherwise, α2, is the
sequence of one B only, if the tape head is reading a blank symbol B (that is,
h = k + 1).

For any given con�guration we assume that the tape head is reading the leftmost
symbol of α2.

2.2 von Neumann's Theory of Self-Reproducing Au-
tomata

Replication is an essential part of life. John von Neumann was the �rst to provide a
model to describe nature's self-reproduction [NEUMNN] with the idea of self-building
automata.
In von Neunamm's vision, there were three main components in a system:

1. A Universal Machine,

2. A Universal Constructor,

3. Information on a Tape.

A universal machine (Turing Machine) would read the memory tape and, using the
information on the tape, it would be able to rebuild itself piece by piece using a
universal constructor.The machine would not understand the process. It would simply
follow the information (blueprint instructions) on the memory tape. The machine
would only be able to select the next proper piece from the set of all the pieces by
picking them one by one until the proper piece was found. When it was found, two
proper pieces would be put together according to the instructions until the machine
reproduced itself completely.
If the information that was necessary to rebuild another system could be found in the
tape, then the automata was able to reproduce itself. The original automata would
be rebuilt (Figure 2.2), and then the newly built automata was booted, which would
start the same process.

CAP. 2 An Abstract Theory of Computer Viruses 16

� 2.3 Computational Domains

Figure 2.2: The model of a self-reproducing machine.

A few years later, Stanislaw Ulam suggested to von Neumann to use the processes
of cellular automation to describe those model. Instead of using "machine parts",
states of cells were introduced. Because cells are operated in robotic fashion according
to rules ("code"), the cell is known as an automation. The array of cells comprises
the cellular automata (CA) computer architecture.
In 1948 von Neumann presented his vision of self-replicating automata systems. Only
�ve years later, in 1953, Watson and Crick recognized that living organisms use the
DNA molecule as a "tape" that provides the information for the reproduction system
of living organisms.
Unfortunately, von Neumann could not see a proof of his work in his life, but his work
was completed by Arthur Burks.

2.3 Computational Domains

2.3.1 Complete Partial Order (CPO)

De�nition 2.3.1. A partial order is a set P on which is de�ned a binary relation v
that have the following properties:

1. re�exive: ∀p ∈ P. p v p

2. transitive: ∀p, q, r ∈ P. p v q & q v r ⇒ p v r

3. antisimmetric: ∀p, q ∈ P. p v q & q v p ⇒ p = q

De�nition 2.3.2. Given a partial order (P,v) and a subset X ⊆ P , p is an upper
bound of X i�

∀q ∈ X. q v p.

We say that p is a least upper bound (for short, lub) of X i�

CAP. 2 An Abstract Theory of Computer Viruses 17

� 2.3 Computational Domains

1. p is an upper bound of X, and

2. for all upper bound q of X, p v q.

The least upper bound in indicated as
⊔

X.

De�nition 2.3.3. Given a partial order (D,v), a ω-chain of the partial order is an
increasing chain d0 vD d1 vD · · · vD · · · elements of the partial order.
A partial order (D,v) is a complete partial order (for short, cpo) if all of its ω-chains
d0 vD d1 vD · · · vD · · · have a lub, that is, every increasing chain {dn|n ∈ ω} of
elements of D has an upper bound

⊔
{dn|n ∈ ω} in D. This may be indicated with:⊔

n∈ωdn.

An imperative programming language (for short, IMP) is made of arithmetical
expressions, boolean expressions and commands. Each of those have his proper do-
mains:

• arithmetical expressions A : Aexp → (Σ → N)

• boolean expressions B : Bexp → (Σ → T)

• commands C : Com → (Σ ⇀ Σ)

where N is the set of natural numbers, T is the set (true,false), and Σ is the set of all
possible states.
A particular state is the bottom state (denoted as ⊥)(see 2.3.2). This state is a
result of a non-terminated command (for example the 'while(true) { }' command).
So as winskel says [WNSKL], the command domain is always de�ned because we
have de�ned the non-termination state as a normal and possible state. And now the
notation of denotational semantic is more easy. The set of possible states is now
extended (in the cpo Σ⊥) by adding a new element that is the least of the set:

∀σ ∈ Σ. ⊥v σ

The partial functions Σ ⇀ Σ are in one-to-one correspondence with the total functions
Σ → Σ.
The complete partial orders are data types that can be used as input or output of
a computation. So the domains of Aexpr,Bexpr and Com are CPOs. The CPO's
elements may be seen as information points, and in the relation x v y, x approximates
y (or x contains minor information than y). Consequently ⊥ is the minimum (null)
information point.

CAP. 2 An Abstract Theory of Computer Viruses 18

� 2.4 Operational Semantic of IMP

2.3.2 Lifting

The operation of adding the ⊥ element to a CPO is known as lifting. Informally, the
lifting process adds a new element that is minor of all other elements of the CPO, to
a copy of the original CPO.
Assume D a CPO. the lifting process assume the existence of an element ⊥ and a
function b−c with the following properties:

• bd0c = bd1c ⇒ d0 = d1, and

• ⊥6= bdc

for all d, d0, d1 ∈ D. The set of the elements of the D⊥ CPO obtained from the lifting
process is de�ned as follows:

D⊥ = {bdc | d ∈ D} ∪ {⊥},

and the partial order is:

d
′

0 v d
′

1 i�

{
d

′
0 = ⊥ or

∃d0, d1 ∈ D. d
′
0 = bd0c& d

′
1 = bd1c& d0vDd1.

So bd0c v bd1c in D⊥ only if d0 v d1. And so D⊥ is a copy of the D CPO with a new
minimum element ⊥ that is distinct from all the others (Figure 2.3.2).

Figure 2.3: Graphic representation of the lifting operation

2.4 Operational Semantic of IMP

As known the execution of a command can bring to a �nal state or stay "bottom" and
never reach a �nal state. With the notation 〈c, σ〉 we denote a command con�guration

CAP. 2 An Abstract Theory of Computer Viruses 19

� 2.4 Operational Semantic of IMP

that means that we are to execute the command c from the state σ. When the
execution stops, it ends in a �nal state σ

′

〈c, σ〉 → σ
′

For example
〈X := 5, σ〉 → σ

′

means that the state σ
′
is obtained from the state σ updating the location X with

the number 5.
Here is the syntax of the IMP language:

• Aexpr : a ::= n | X | a0 + a1 | a0 − a1 | a0 × a1.

• Bexpr : b ::= true | false | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1.

• Com : c ::= skip | X := a | if b then c0 else c1 | while b do c.

We leave the rules of Aexpr and Bexpr to the reader [WNSKL], and give the rules of
the operational semantic of commands:

〈skip, σ〉 → σ (2.1)

〈a, σ〉 → m

〈X := a, σ〉 → σ[m/X]
(2.2)

〈c0, σ〉 → σ
′′ 〈c1, σ

′′〉 → σ
′

〈c0; c1, σ〉 → σ′ (2.3)

〈b, σ〉 → true 〈c0, σ〉 → σ
′

〈if b then c0 else c1, σ〉 → σ′ (2.4)

〈b, σ〉 → false 〈c1, σ〉 → σ
′

〈if b then c0 else c1, σ〉 → σ′ (2.5)

〈b, σ〉 → false

〈while b do c, σ〉 → σ

〈b, σ〉 → true 〈c, σ〉 → σ
′′ 〈 while b do c, σ

′′〉 → σ
′

〈while b do c, σ〉 → σ′ (2.6)

Even on command is de�ned the equivalence relationship:

c0 ∼ c1 i� ∀σ, σ
′ ∈ Σ. 〈c0, σ〉 → σ

′ ⇐⇒ 〈c1, σ〉 → σ
′

(2.7)

CAP. 2 An Abstract Theory of Computer Viruses 20

� 2.5 Basic Virus De�nitions

2.5 Basic Virus De�nitions

For the purpose of motivating the de�nitions which follows, consider this 'case study':

A text editor becomes infected with a computer virus. Each time the text editor
is used, it performs the text editing tasks as it did prior to infection, but it also
searches the �les for a program and infects it. When run, each of these newly infected
programs performs its 'intended' tasks as before, but also searches the �les for a pro-
gram and infects it. This process continues. As these infected programs pass between
systems, as when they are sold, or given to others, new opportunities for spreading
the virus are created. Finally, after Jan. 1, 2010, the infected programs cease acting
as before. Now each time such program is run, it deletes all �les.

Such a "classic" computer virus can follows a scheme similar to this:

{ main:=

call injure;

...

call submain;

...

call infect;

}

{ injure:=

if 'condition' then whatever damage is to be done and halt

}

{ infect:=

if 'condition' then infect files

}

By modifying the scheme above, a wide variety of "classic" viruses can be created.
From the above scheme, it appears that the following properties are relevant:

1. For every program, there is an 'infected' form of that program. That is, it is
possible to think of the virus as a function that maps programs to ('infected'
form) programs.

2. Each infected program on each input (where by input is meant all 'accessible'
information such as the user input, or the system clock, or �les containing data
or programs) makes one of tree choices:

Injure: ignore the 'intended' task and compute some other function. Note that
which inputs result in injury and what kind of injury occurs are the same
whether the infected program is a text editor or a compiler or something
else.Thus which inputs result in injury and what form the injury takes is

CAP. 2 An Abstract Theory of Computer Viruses 21

� 2.5 Basic Virus De�nitions

independent of which infected program is running and is actually dependent
solely on the virus itself.

Infect: Perform the 'intended' task and if it halts, infect programs. Notice that all
the resource such as clock, the user/program communications and all 'ac-
cessible' information other than programs, are handled just as they would
have been had the uninfected version of the program been run. Further,
notice that whether the infected program is a text editor or a compiler or
something else, when it infects a program the resulting infected program
is the same. Thus the infected form of a program is independent of which
infected program produces the infection.

Imitate: Neither injure nor infect. Perform the 'intended' task without modi�cation.
This may be thought of as a special case of 'Infect', where the number of
programs getting infected is zero. (in the case of study, imitation only
occurs when no programs are accessible for infection).

In more sophisticated viruses the injury process may not halt when �nished (as they
do in classical virus), but an 'Imitate' process can be done. This is done to hide as
long as possible the virus to the user.(e.g., an injury procedure that deletes disk tracks
or sector randomly then continues to preform the original program task as 'intended').

2.5.1 An Operational Semantic of Computer Viruses

A program P : Σ → Σ⊥ is intended as a sequence (equation 2.3) of commands.

P = c0; c1; . . . ; cz = C[c0; c1; . . . ; cz] = C[cz] ◦ · · · ◦ C[c2] ◦ C[c1] (2.8)

where z is the length of the program.

P1 is the "clean" program, P2 is the infected form of the program. Both are in
the form shown in Eq.2.8

De�nition 2.5.1. (clean) P1 = P2 i�

∀i.0 ≤ i ≤ z, cip1
= cip2

.

De�nition 2.5.2. (imitate) P1 ' P2 i�

X ⊆ Σ , ∀σ ∈ Σ , ∀x′
, x

′′ ∈ X.(〈P1, σ〉 → x
′
& 〈P2, σ〉 → x

′′
) ⇒ x

′
= x

′′
.

where X is the set of all "visible states" (e.g., output). Visible sates are a subset
of the machine states Σ that a user can see (altered).

CAP. 2 An Abstract Theory of Computer Viruses 22

� 2.5 Basic Virus De�nitions

De�nition 2.5.3. (infect) P1
h∼ P2 i�

∃i.cip1
6= cip2

&

∀i. 0 ≤ i ≤ z either

{
cip1

= cip2
or

h(cip1
) = cip2

.

De�nition 2.5.4. (infect or imitate) P1

h∼= P2 i� P1 ' P2 or P1
h∼ P2

De�nition 2.5.5. (injury) P1 6= P2 i�

P1
h∼ P2 &

∀σ, σ′ ∈ Σ.(〈P1, σ〉 → σ
′
& 〈P2, σ〉 → σ

′′
) ⇒ σ

′ 6= σ
′′

De�nition 2.5.6. A program is pathogenic i�

P1�h
P2 &

P1 6= P2

De�nition 2.5.7. A program is contagious i�

P1∼hP2

De�nition 2.5.8. A program is benignant i�

• is not pathogenic

• is not contagious

De�nition 2.5.9. A program is a Trojan horse i�

• is pathogenic

• is not contagious

De�nition 2.5.10. A program is a carrier i�

• is not pathogenic

• is contagious

De�nition 2.5.11. A program is virulent i�

• is pathogenic

• is contagious

CAP. 2 An Abstract Theory of Computer Viruses 23

� 2.5 Basic Virus De�nitions

2.5.2 A Denotational Semantic of Computer Viruses

In the previous section we have seen the basic virus de�nition from an operational
point of view. So we intended a program as a sequence of commands (statements)
and the input as a set of state that can be modi�ed by the program (output).
In this section we want to present another point of view: a functional point of view.
A program s a partial recursive function from the set of natural numbers to its self
(input/output). This theory was �rst introduced by Adleman [VIRTHRY] in early
1980s.

De�nition 2.5.12. 1. S denotes the set of all �nite sequences of natural numbers.

2. e denotes a computable injective function from S × S onto N with computable
inverse.

3. ∀s, t ∈ S, 〈s, t〉 denotes e(s, t)

4. For all partial f : N → N , ∀s, t ∈ S , f(s, t) denotes f(〈s, t〉).

5. e
′
denotes a computable injective function from N ×N onto N with computable

inverse such that ∀i, j ∈ N , e
′
(i, j) ≥ i.

6. ∀i, j ∈ N , 〈i, j〉 denotes e
′
(i, j).

7. For all partial f : N → N , ∀i, j ∈ N , f(i, j) denotes f(〈i, j〉).

8. For all partial f : N → N , ∀n ∈ N , write f(n) ↓ i� f(n) is de�ned.

9. For all partial f : N → N , ∀n ∈ N , write f(n) ↑ i� f(n) is unde�ned.

De�nition 2.5.13. For all partial f, g : N → N , ∀s, t ∈ S, f(s, t) = g(s, t) i� either:

1. f(s, t) ↑ & g(s, t) ↑ or

2. f(s, t) ↓ & g(s, t) ↓ & f(s, t) = g(s, t)

De�nition 2.5.14. For all z, z′ ∈ N , ∀p, p′, q = q1, q2, . . . , qz, q′ = q′1, q
′
2, . . . , q

′
z ∈ S,

for all partial functions h : N → N , 〈p, q〉 h∼ 〈p′, q′〉 i�:

1. z = z′ and

2. p = p′ and

3. there exists an i, with 1 ≤ i ≤ z such that qi 6= q′i and

4. for i = 1, 2, . . . , z, either

(a) qi = q′i or

(b) h(qi) ↓ and h(qi) = q′i.

CAP. 2 An Abstract Theory of Computer Viruses 24

� 2.5 Basic Virus De�nitions

De�nition 2.5.15. For all partial f, g, h : N → N , ∀s, t ∈ S, f(s, t) h∼ g(s, t) i�
f(s, t) ↓ & g(s, t) ↓ & f(s, t) h∼ g(s, t).

De�nition 2.5.16. For all partial f, g, h : N → N , ∀s, t ∈ S, f(s, t)
h∼= g(s, t) i�

f(s, t) = g(s, t) or f(s, t) h∼ g(s, t).

De�nition 2.5.17. For all Gödel numberings of the partial recursive functions {φi},
a total recursive function v is a virus with respect to {φi} i� for all d, p ∈ S, either:

1. Injure: (∀i, j ∈ N)[φv(i)(d, p) = φv(j)(d, p)]

2. Infect or Imitate: (∀j ∈ N)[φj(d, p)
h∼= φv(j)(d, p)]

Types of Viruses

In this section the set of viruses is decomposed into the disjoint union of four principal
types.

De�nition 2.5.18. For all Gödel numberings of the partial recursive functions {φi},
for all viruses v with respect to {φi}, for all i, j ∈ N :

• i is pathogenic with respect to v and j i�

i = v(j) &

(∃d, p ∈ S)[φj(d, p)
h

� φi(d, p)]

• i is contagious with respect to v and j i�

i = v(j) &

(∃d, p ∈ S)[φj(d, p) h∼ φi(d, p)]

• i is benignant with respect to v and j i�

i = v(j) &

i is not pathogenic with respect to j &

i is not contagious with respect to j

• i is a Trojan horse with respect to v and j i�

i = v(j) &

i is pathogenic with respect to j &

i is not contagious with respect to j

CAP. 2 An Abstract Theory of Computer Viruses 25

� 2.5 Basic Virus De�nitions

• i is a carrier with respect to v and j i�

i = v(k) &

i is not pathogenic with respect to j &

i is contagious with respect to j

• iis virulent with respect to v and j i�

i = v(j) &

i is pathogenic with respect to j &

i is contagious with respect to j

De�nition 2.5.19. For all Gödel numberings of the partial recursive functions {φi},
for all viruses v with respect to {φi}:

• v is benign i� both:

� (∀j ∈ N)[v(j) is not pathogenic with respect to v and j]

� (∀j ∈ N)[v(j) is not contagious with respect to v and j]

• v is Epian i� both:

� (∃j ∈ N)[v(j) is pathogenic with respect to v and j]

� (∀j ∈ N)[v(j) is contagious with respect to v and j]

• v is disseminating i� both:

� (∀j ∈ N)[v(j) is not pathogenic with respect to v and j]

� (∃j ∈ N)[v(j) is contagious with respect to v and j]

• v is malicious i� both:

� (∃j ∈ N)[v(j) is pathogenic with respect to v and j]

� (∃j ∈ N)[v(j) is contagious with respect to v and j]

Mutating Viruses (µ-viruses)

De�nition 2.5.20. For all z, z′ ∈ N , for all p, p′, q = q1, q2, . . . , qz, q
′ = q′1, q

′
2, . . . , q

′
z ∈

S, for all sets H of partial functions from N to N , 〈p, q〉H∼ 〈p′, q′〉 i�:

1. z = z′ and

2. p = p′ and

3. there exists an i, with 1 ≤ i ≤ z such that qi 6= q′i and

CAP. 2 An Abstract Theory of Computer Viruses 26

� 2.5 Basic Virus De�nitions

4. for i = 1, 2, . . . , z either

(a) qi = q′i or

(b) there exists an h ∈ H such that h(qi) ↓ and h(qi) = q′i.

De�nition 2.5.21. For all sets of partial functions H from N to N , for all partial
f, g : N → N , for all s, t ∈ S, f(s, t)H∼ g(s, t) i� f(s, t) ↓ & g(s, t) ↓ & f(s, t)H∼
g(s, t).

De�nition 2.5.22. For all sets of partial functions H from N to N , for all partial

f, g : N → N , for all s, t ∈ S, f(s, t)
H∼= g(s, t) i� f(s, t) = g(s, t) or f(s, t)H∼ g(s, t).

De�nition 2.5.23. For all Gödel numberings of the partial recursive functions {φi},
a set M of total recursive functions is a mutating virus, µ-virus, with respect to {φi}
i� both:

1. ∀m ∈ M , ∀d, p ∈ S either:

(a) Injure: (∀i, j ∈ N)[φm(i)(d, p) = φm(j)(d, p)]

(b) Infect or Imitate: (∀j ∈ N)[φj(d, p)
M∼= φm(j)(d, p)]

Detecting The Set Of Viruses

theorem 2.5.24. For all Gödel numberings of the partial recursive functions {φi}:

V = {i|φi is a virus} is Π2 - complete

Proof.
See Adleman's paper [VIRTHRY].

CAP. 2 An Abstract Theory of Computer Viruses 27

Chapter 3

Computer Architecture Dependency

One of the most important steps toward understanding computer viruses is learning
about the particular environment in which they operate. In theory, for any given
sequence of symbols we can de�ne an environment in which that sequence could repli-
cate itself. In practice, we need to be able to �nd the environment in which the
sequence of symbols operates and prove that it uses code explicitly to make copies of
itself and does so recursively.
A successful penetration of the system by viral code occurs only if the various depen-
dencies of malicious code match a potential environment.
A virus may depend on a particular CPU (x86, PPC, Sparc) or on a particular Op-
erating System. A virus that runs under MS-DOS can only run under Intel's 8086
CPU, earlier versions of Windows runs only on Intel x86 CPU, but Windows NT and
newer runs even on MIPS, aplha and IA64. Linux runs on a lot of di�erent hardware
and di�erent CPUs. If we consider high level languages or cross-platform languages
such as Java and .NET, then the number of potential target of viruses covers almost
every computer.
So a virus strictly depends on the environment (O.S.) it was designed for. If we con-
sider the Whale virus (one of the earlier viruses) it would not replicate in modern
computers because it has an interesting dependency on early 8088 architectures on
which it works perfectly.
In theory, it would be feasible to create a multi-architecture binary virus (the PeElf
virus in march 2001), but this is not a simple task.

3.1 CPU Dependency

The CPU dependency a�ects binary computer viruses. The source code of programs
is compiled to object, which is linked in a binary format (executable format). The
executable format contains the "genome" of a program as a sequence of instructions.
The instructions consist of opcodes. Every CPU recognizes its own set of opcodes.

CAP. 3 Computer Architecture Dependency 28

� 3.1 CPU Dependency

For instance, the instruction NOP (no operation) has di�erent opcode on an Intel
(0x90), on a VAX (0x01) and on a Machintosh PowerPC (there is no opcode for NOP,
it can be simulated with the ori 0,0,0 instruction which leaves unaltered the machine
statuses).
RISC and CISC architecture has di�erent opcodes format. In the RISC architecture
an opcode takes always one word in which a group of bits have a particular meaning.
On the contrary in CISC platform, an opcode can be made of one or more words.
There is yet another form of CPU dependency that occurs when a particular pro-
cessor is not 100% backward compatible with the previous generation and does not
support the features of another perfectly or at all. For example, the Finnpoly virus
fails to work on 386 processors because the processor incorrectly executes the instruc-
tion "CALL SP" (make a call according to the Stack Pointer).
Some viruses use instructions that are simply no longer supported on newer CPU. For
instance, the 8086 Intel CPU supported a "POP CS" instruction, although Intel did
not document it. Later, the instruction opcode (0x0F) was used to trap into multiple
opcode table. A similar example of this kind of dependency is the "MOV CS,AX"
instruction used by some early computer viruses, such as the Italian boot virus, Ping
Pong.
Other computer viruses might use the coprocessor or MMX (Multimedia Extensions)
or some other extension, which is cause them to fail when they execute on a machine
that does not support them.
Some viruses may use some kind of defense techniques based on altering the pro-
cessor's prefetch queue. The size of the prefetch queue is di�erent from processor
to processor. Virus can try to overwrite code in the next instruction slot, hoping
that such code is already in the processor prefetch queue. Such modi�cation is useful
during the debugging process of a virus in which the virus hide its real form; thus a
novice virus code analyst is often unable to analyze such virus.
In modern processors all memory block have a set of bit that indicate the memory
block attributes. Thus the memory block can be any combination of Read-Only,
Writable, Executable or more attributes. Usually in modern computers the code area
is marked as read-only. This can prevent viruses of modifying (or self-modifying) the
code.
In such cases if the virus gains the ring0 privilege (in which it can modify anything it
wants in the computer), it can change such memory attributes.
If not, a virus can move the code to a writable area of memory such as the stack or the
heap, and jump into that area continuing the execution from that writable memory
block.

CAP. 3 Computer Architecture Dependency 29

� 3.2 Operating System Dependency

3.2 Operating System Dependency

Traditionally, operating systems were hard-coded to a particular CPU architecture.
Microsoft's �rst operating system (MS-DOS) supported Intel processors only. In '90s
the need to support more CPU architectures with the same operating system was in-
creasing. The operating systems began to be written in higher-level language, such as
C/C++, and can be easy ported to other CPU architectures. Thus all UNIX derived
systems (such as Linux) can run on di�erent CPUs architectures. Even Microsoft's
O.S. Windows NT was designed to support multiple CPU architectures.
Most computer viruses can operate only on a single operating system. They strictly
depends on the environment they was designed for. It is feasible, but very rare, to
create cross-environment viruses such as the PeElf virus that infects both Windows
and Linux �les. The virus programmer must be aware of the environment di�erences.
For example the MS-DOS system calls can be invoked with the "int 0x21" instruction
and by putting into the registers the appropriate numbers. In Linux system calls can
be invoked with the "int 0x80" instruction and there is no correspondence with the
registers values of the MS-DOS operating system. Even the functionality are di�er-
ent because the MS-DOS is an old mono-task mono-user system. Instead Linux in
designed for newer CPU and can deal with memory block protection, task protection,
and so on.
Microsoft's windows systems don't use the "int" instruction to call the system calls.
This is done by calling the system APIs that are stored in various DLLs. (uno�cially
the programmer can call the "int 0x2E" which is totally undocumented by Microsoft).
So, Linux, unlike windows, provides a direct way to interface with the kernel through
the int 0x80 interface. Windows on the other hand, does not have a direct kernel
interface. The system must be interfaced by loading the address of the function that
needs to be executed from a DLL (Dynamic Link Library). The key di�erence be-
tween the two is the fact that the address of the functions found in windows will
vary from OS version to OS version while the int 0x80 syscall numbers will remain
constant. Windows programmers did this so that they could make any change needed
to the kernel without any hassle; Linux on the contrary has �xed numbering system
for all kernel level functions.
Some operating systems such as Microsoft's are backward compatible so a virus writ-
ten for earlier O.S. like MS-DOS can replicate on Windows O.S. but can often fail.
This because in newer operating systems some of the functionality or tricks are hided
by the system or no more available. For example in MS-DOS we can use directly the
I/O ports, but under Windows systems we cannot because they are handled by the
system's virtual drivers and may be manipulated indirectly via the APIs.
A 32-bit Windows virus will infect only portable executable (PE) �les and will not be
able to replicate itself on DOS �le format such as MZ. However, so-called multipartite
viruses are able to infect several �le formats or system areas, enabling them to jump
from one operating environment to an other. The most important environmental
dependency of a binary computer virus is the operating system itself.

CAP. 3 Computer Architecture Dependency 30

� 3.3 Operating System Version Dependency

3.3 Operating System Version Dependency

Some computer viruses depends not only on a particular operating system, but also
on an actual system version. Young virus researchers often struggle to analyze such
a virus. After a few minutes of unsuccessful test infections on their research system
they might believe that a particular virus does not work at all. For example, the
W95/Boza virus does not work on non-English releases of Windows 95, such as the
Hungarian release of the operating system.
We have seen on the previous section (3.2) that di�erent release version of Window
may have di�erent address for the system APIs. The programmer can interface with
the kernel only with these APIs. But a virus programmer cannot compile its virus for
every infection, so he must create a code that is able to interface with the kernel and
get the APIs addresses on its own.
On Windows operative systems, there are multitudes of ways to �nd the addresses
of the functions that the virus needs to use. There are two methods for addressing
functions; you can �nd the desired function at runtime or use hard coded addresses.

3.3.1 runtime method

When a program is loaded into memory for execution, the memory map for all program
is made of(every program in modern CPU architecture have a protected space of 4GB
�at memory): the user space, the shared memory, the kernel, and the device drivers.

begin memory end memory
Application code and data 0x00000000 0x3FFFFFFF

Shared Memory 0x40000000 0x7FFFFFFF
Kernel 0x80000000 0xBFFFFFFF

Device Drivers 0xC0000000 0xFFFFFFFF

Table 3.1: Memory layout on program's execution

So the Kernel32.dll is loaded into the program's memory space. When we run
an application, the code is invoked from a piece of code of the Kernel32, it's like
the kernel makes a "CALL" instruction to the application. So, when the program is
launched, it can retrieve the return address from the stack (the %esp register). The
%eax register (in Figure 3.1) has a value similar to 0xBFF8XXXX, where XXXX
has no importance. Infact the Win32 platform usually rounds up addresses to page
alignment. Thus we can search for the Kernel32 PE heather at the beginning of all
pages and retrieve the Kernell32 Base Address. This DLL holds LoadLibrary and
GetProcAddress, the two functions needed to obtain any functions address.
Once we have the Kernell32's base address we can retrieve the full address of its func-

CAP. 3 Computer Architecture Dependency 31

� 3.4 File System Dependency

.data ;necessary for the TASM32/TLINK32

db ?

.code

start:

mov (%esp),%eax

and $0xFFFF0000,%eax

ret

end start

Figure 3.1: Retrieve the kernel's return address

tions by adding the o�set we �nd in the Import or Export Table in the PE �le heathers.

3.3.2 hard coded method

An other way for the injected code to call the system APIs, is to hard code at least the
LoadLibrary and GetProcAddress address. We can use the program listed in Figure
3.2 for this purpose.

3.4 File System Dependency

Computer viruses also have �le system dependencies. For most virus it does not
matter whether the targeted �les resides on a File Allocation Table (FAT) originally
designed only for DOS; or the New Technology File System (NTFS) use by windows
NT and newer Windows systems; or EXT2/EXT3 �lesystem the default Linux FS;
or a network �le system. For such viruses as long as they are compatible with the
operating environment's high-level �le system interface, they work. They simply infect
the �le or store new �les on the disk without paying attention to the actual storage
format. However, other kinds of viruses depend strongly on the actual �le system.
We have a look to how viruses can infect common �le systems.

3.4.1 Cluster Viruses in FAT �le system

The Bulgarian virus DIR-II spread itself by manipulating key structures of FAT-based
�le systems. The virus overwrites the pointer in the directory entry that points to
the �rst cluster of a �le with a value that directs the disk-read to the virus body. The
virus stores the pointer to the real �rst cluster of each host program in an encrypted
form in an unused part of the directory entry structure. This is used later to execute
the real host from the disk after the virus has been loaded in memory.
Another common techniques is to place the virus code at the end of the �le in the
unused free space between the EOF (End of File) and the last sector of the last

CAP. 3 Computer Architecture Dependency 32

� 3.4 File System Dependency

#include <windows.h>

#include <stdio.h>

int main(int argc, char** argv)

{

HMODULE hmod_libname;

FARPROC fprc_func;

printf("arwin - win32 address resolution program - by steve hanna - v.01\n");

if(argc < 3)

{

printf("%s <Library Name> <Function Name>\n",argv[0]);

exit(-1);

}

hmod_libname = LoadLibrary(argv[1]);

if(hmod_libname == NULL)

{

printf("Error: could not load library!\n");

exit(-1);

}

fprc_func = GetProcAddress(hmod_libname,argv[2]);

if(fprc_func == NULL)

{

printf("Error: could find the function in the library!\n");

exit(-1);

}

printf("%s is located at 0x%08x in %s\n",argv[2],(unsigned int)fprc_func,argv[1]);

}

Figure 3.2: Program that retrieves LoadLibrary and GetProcAddress adresses.

CAP. 3 Computer Architecture Dependency 33

� 3.4 File System Dependency

$ echo "test file">testfile.txt

$ cat testfile.txt

test file

$ cat testfile.txt/mystream

cat: testfile.txt/mystream: Not a directory

$ cat testfile.txt/rsrc

$ ll testfile.txt

-rw-r--r-- 1 drugo drugo 10 Jul 23 14:53 testfile.txt

$ echo "my stream text">testfile.txt/mystream

-bash: testfile.txt/mystream: Not a directory

$ ls -al testfile.txt/rsrc

-rw-r--r-- 1 drugo drugo 0 Jul 23 14:53 testfile.txt/rsrc

$ echo "my test string">testfile.txt/rsrc

$ ls -al testfile.txt/rsrc

-rw-r--r-- 1 drugo drugo 15 Jul 23 15:00 testfile.txt/rsrc

$ cat testfile.txt/rsrc

my test string

$

Figure 3.3: The resource fork on HFS (Mac OS X) �le system

cluster. Infact the disk is divided into sectors (usually of 512 bytes each), and sectors
are grouped into clusters. So it is rare that a program �lls without leaving unused
sectors (or totally used sectors) of the last cluster assigned to it from the operating
system. This is a good place to store the virus code because it wont increase the size
of the host program on the disk.

3.4.2 HFS File System

A little-known feature of the HFS �le system (used actually on Mac OS X 10.4)
is the so called Resource fork. The resource fork is an invisible �le stream (named
/rsrc) associated to a regular �le so that it is easier to store a variety of additional
information, such as allowing the system to display the correct icon for a �le and open
it without the need for a �le extension in the �le name. This �le stream is completely
invisible to the user when it performs a list of the �les in the directory but smart users
can notice di�erences between the actual �le size before and after have written data
into the resource fork(Figure 3.3). A virus writer can use this feature to implement a
Companion virus (Appendix B).

3.4.3 NTFS File System

The NTFS �le system was introduced with Windows NT operating system. Windows
NT had to support multiple-fork �les because the server version was intended to

CAP. 3 Computer Architecture Dependency 34

� 3.5 File Format Dependency

c:\> echo this is a test > stream.dat:text

c:\> more <stream.dat:text

this is a test

Figure 3.4: NTFS multiple streams.

service Macintosh computers. So on NTFS, a �le can contain multiple streams on the
disk. The "main stream" is the actual �le itself. For instance, notepad.exe's code can
be found in the main stream of the �le. A �le can contain not only one additional
stream as it was on Apple's HFS (3.4.2), but a variety of alternative streams (with
customizable names) can be created and associated to a �le (Figure 3.4). This is a
bigger security problem that HFS �le system, because in HFS the alternative stream
has always the same constant name, so it is simple to check if a �le has been infected,
but in NTFS we cannot �nd it easily.

3.5 File Format Dependency

Viruses can be classi�ed according to the �le object they can infect. This short section
is an introduction to common binary format infectors.

3.5.1 COM Viruses on DOS

A COM �le format is a �at format that doesn't have any structure needed by the
system loader to map it into memory. The DOS simply makes a copy of the �le at a
memory location that starts 256 bytes after the beginning of the chosen segment. The
�rst 256 byte are reserved by the operating system for the Program Segment Pre�x
(PSP for short). The PSP holds the state of the running program seen by the operative
system (Figure 3.5). So the entry point is �xed (CS:100h). A common technique for
infecting such kind of �les is to place a "jump" instruction at the beginning of the �le
that points to the virus code usually appended to the end of the �le. Once the virus
has �nished it can rejoin the original execution �ow.
The infection strategies are explained more in detail in the next chapter.

3.5.2 EXE Viruses on DOS

The EXE �le format was introduced by Microsoft to break the 64K limit that a�ected
the COM �les. The �le is seen now as a group of segment each of 64K maximum.
The EXE �le format has a little structure (Figure 3.6) used by the system loader.
The entry-point is independent by the PSP.
A common technique for infecting EXE �les is to modify the program's entry point
from the EXE structure at o�set 0x14. This will point to the virus code injected,

CAP. 3 Computer Architecture Dependency 35

� 3.5 File Format Dependency

Offset Size Description

00 word machine code INT 20 instruction (CDh 20h)

02 word top of memory in segment (paragraph) form

04 byte reserved for DOS, usually 0

05 5bytes machine code instruction long call to the DOS

function dispatcher (obsolete CP/M)

06 word .COM programs bytes available in segment (CP/M)

0A dword INT 22 terminate address; DOS loader jumps to this

address upon exit; the EXEC function forces a child

process to return to the parent by setting this

vector to code within the parent (IP,CS)

0E dword INT 23 Ctrl-Break exit address; the original INT 23

vector is NOT restored from this pointer (IP,CS)

12 dword INT 24 critical error exit address; the original

INT 24 vector is NOT restored from this field (IP,CS)

16 word parent process segment addr (Undoc. DOS 2.x+)

COMMAND.COM has a parent id of zero, or its own PSP

18 20bytes file handle array (Undocumented DOS 2.x+); if handle

array element is FF then handle is available. Network

redirectors often indicate remotes files by setting

these to values between 80-FE.

2C word segment address of the environment, or zero (DOS 2.x+)

2E dword SS:SP on entry to last INT 21 function (Undoc. 2.x+) Ø

32 word handle array size (Undocumented DOS 3.x+)

34 dword handle array pointer (Undocumented DOS 3.x+)

38 dword pointer to previous PSP (deflt FFFF:FFFF, Undoc 3.x+) Ø

3C 20bytes unused in DOS before 4.01 Ø

50 3bytes DOS function dispatcher CDh 21h CBh (Undoc. 3.x+) Ø

53 9bytes unused

5C 36bytes default unopened FCB (File Control Block) #1 (parts overlayed by FCB #2)

6C 20bytes default unopened FCB #2 (overlays part of FCB #1)

80 byte count of characters in command tail; all bytes

following command name; also default DTA (Disk allocation Table) (128 bytes)

81 127bytes all characters entered after the program name followed

by a CR byte

- offset 5 contains a jump address which is 2 bytes too low for

PSP's created by the DOS EXEC function in DOS 2.x+ Ø

- program name and complete path can be found after the environment

in DOS versions after 3.0. See offset 2Ch.

Figure 3.5: The Program Segment Pre�x (PSP) structure.

CAP. 3 Computer Architecture Dependency 36

� 3.5 File Format Dependency

Offset Size Description

00 word "MZ" - Link file .EXE signature

Mark Zbikowski: Microsoft's engineer who created the EXE format.

02 word length of image mod 512

04 word size of file in 512 byte pages

06 word number of relocation items following header

08 word size of header in 16 byte paragraphs, used to locate

the beginning of the load module

0A word min # of paragraphs needed to run program

0C word max # of paragraphs the program would like

0E word offset in load module of stack segment (in paragraphs)

10 word initial SP value to be loaded

12 word negative checksum of pgm used while by EXEC loads pgm

14 word program entry point, (initial IP value and CS file offset)

16 word offset in load module of the code segment (in paragraphs)

18 word offset in .EXE file of first relocation item

1A word overlay number (0 for root program)

* relocation table and the program load module follow the header

* relocation entries are 32 bit values representing the offset into

the load module needing patched

* once the relocatable item is found, the CS register is added to the

value found at the calculated offset

Registers at load time of the EXE file are as follows:

AX contains number of characters in command tail, or 0

BX:CX 32 bit value indicating the load module memory size DX zero

SS:SP set to stack segment if defined else, SS = CS and SP=FFFFh or top of memory.

DS set to segment address of EXE header

ES set to segment address of EXE header

CS:IP far address of program entry point, (label on "END" statement of program)

Figure 3.6: The EXE format structure.

CAP. 3 Computer Architecture Dependency 37

� 3.5 File Format Dependency

and the original entry point is saved by the virus and used later to return to original
execution �ow.

3.5.3 PE (Portable Executable) Viruses on Windows

The PE �le format for Windows NT introduces a completely new structure to devel-
opers familiar with the Windows and MS-DOS environments. Yet developers familiar
with the UNIX environment will �nd that the PE �le format is similar to, if not based
on, the COFF speci�cation.
The entire format consists of an MS-DOS MZ header, followed by a real-mode stub
program, the PE �le signature, the PE �le header, the PE optional header, all of the
section headers, and �nally, all of the section bodies (Figure 3.7).
We now have a look the the most important �elds of the �le structure and we explain
the common infection techniques (see ??) later.

MS-DOS/Real-Mode Header

The MS-DOS header is not new for the PE �le format. It is the same MS-DOS header
that has been around since version 2 of the MS-DOS operating system. The main
reason for keeping the same structure intact at the beginning of the PE �le format is
so that, when you attempt to load a �le created under Windows version 3.1 or earlier,
or MS DOS version 2.0 or later, the operating system can read the �le and understand
that it is not compatible. In other words, when you attempt to run a Windows NT
executable on MS-DOS version 6.0, you get this message: "This program cannot be
run in DOS mode." If the MS-DOS header was not included as the �rst part of the
PE �le format, the operating system would simply fail the attempt to load the �le and
o�er something completely useless, such as: "The name speci�ed is not recognized as
an internal or external command, operable program or batch �le.".
The MS-DOS header occupies the �rst 64 bytes of the PE �le. A structure represent-
ing its content is described below:

typedef struct _IMAGE_DOS_HEADER { // DOS .EXE header

USHORT e_magic; // Magic number

USHORT e_cblp; // Bytes on last page of file

USHORT e_cp; // Pages in file

USHORT e_crlc; // Relocations

USHORT e_cparhdr; // Size of header in paragraphs

USHORT e_minalloc; // Minimum extra paragraphs needed

USHORT e_maxalloc; // Maximum extra paragraphs needed

USHORT e_ss; // Initial (relative) SS value

USHORT e_sp; // Initial SP value

USHORT e_csum; // Checksum

CAP. 3 Computer Architecture Dependency 38

� 3.5 File Format Dependency

Figure 3.7: The PE File Format Structure.

CAP. 3 Computer Architecture Dependency 39

� 3.5 File Format Dependency

USHORT e_ip; // Initial IP value

USHORT e_cs; // Initial (relative) CS value

USHORT e_lfarlc; // File address of relocation table

USHORT e_ovno; // Overlay number

USHORT e_res[4]; // Reserved words

USHORT e_oemid; // OEM identifier (for e_oeminfo)

USHORT e_oeminfo; // OEM information; e_oemid specific

USHORT e_res2[10]; // Reserved words

LONG e_lfanew; // File address of new exe header

} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

The �rst �eld, e_magic, is the so-called magic number. This �eld is used to identify
an MS-DOS-compatible �le type. All MS-DOS-compatible executable �les set this
value to 0x54AD, which represents the ASCII characters MZ. MS-DOS headers are
sometimes referred to as MZ headers for this reason. Many other �elds are important
to MS-DOS operating systems, but for Windows NT, there is really one more impor-
tant �eld in this structure. The �nal �eld, e_lfanew, is a 4-byte o�set into the �le
where the PE �le header is located. It is necessary to use this o�set to locate the PE
header in the �le. For PE �les in Windows NT, the PE �le header occurs soon after
the MS-DOS header with only the real-mode stub program between them.

PE File Header and Signature

All possible Signature accepted at the moment from the loader are listed below (from
winnt.h):

#define IMAGE_DOS_SIGNATURE 0x5A4D // MZ

#define IMAGE_OS2_SIGNATURE 0x454E // NE

#define IMAGE_OS2_SIGNATURE_LE 0x454C // LE

#define IMAGE_NT_SIGNATURE 0x00004550 // PE00

The PE header is a 0x20-byte data structure describing the fundamental �le charac-
teristics and containing the PE/x0/x0 signature, which is used ti identify the �le as
PE.

typedef struct _IMAGE_FILE_HEADER {

USHORT Machine;

USHORT NumberOfSections;

ULONG TimeDateStamp;

ULONG PointerToSymbolTable;

ULONG NumberOfSymbols;

USHORT SizeOfOptionalHeader;

USHORT Characteristics;

} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

#define IMAGE_SIZEOF_FILE_HEADER 20

CAP. 3 Computer Architecture Dependency 40

� 3.5 File Format Dependency

The Machine �eld indicates the type of CPU for which the �le has been compiled.
The �le won't load on I386 machines if this �eld contains anything other than 0x14C.
The NumberOfSection �eld depends on the speci�c features of the way the loader
is implemented or depends on the way the compiler generate the code. This �eld can
be modi�ed by virus if it performs an injection of code by adding a section.
The section table can be located by the sum of the e_lfanew plus the size of the image
�le header and the size of the optional header.

PE Optional Header

The optional header contains most of the meaningful information about the executable
image, such as initial stack size, program entry point location, preferred base address,
operating system version, section alignment information, and so forth. The term
"optional" is not an appropriate choice for this header. This header is mandatory, is
not optional. This can only be understood in relation to the fact that, when the PE
was under construction, the situation was di�erent, and this term is only a legacy.
The IMAGE_OPTIONAL_HEADER structure represents the optional header as
follows:

typedef struct _IMAGE_OPTIONAL_HEADER {

//

// Standard fields.

//

USHORT Magic;

UCHAR MajorLinkerVersion;

UCHAR MinorLinkerVersion;

ULONG SizeOfCode;

ULONG SizeOfInitializedData;

ULONG SizeOfUninitializedData;

ULONG AddressOfEntryPoint;

ULONG BaseOfCode;

ULONG BaseOfData;

//

// NT additional fields.

//

ULONG ImageBase;

ULONG SectionAlignment;

ULONG FileAlignment;

USHORT MajorOperatingSystemVersion;

USHORT MinorOperatingSystemVersion;

USHORT MajorImageVersion;

USHORT MinorImageVersion;

USHORT MajorSubsystemVersion;

USHORT MinorSubsystemVersion;

ULONG Reserved1;

CAP. 3 Computer Architecture Dependency 41

� 3.5 File Format Dependency

ULONG SizeOfImage;

ULONG SizeOfHeaders;

ULONG CheckSum;

USHORT Subsystem;

USHORT DllCharacteristics;

ULONG SizeOfStackReserve;

ULONG SizeOfStackCommit;

ULONG SizeOfHeapReserve;

ULONG SizeOfHeapCommit;

ULONG LoaderFlags;

ULONG NumberOfRvaAndSizes;

IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];

} IMAGE_OPTIONAL_HEADER, *PIMAGE_OPTIONAL_HEADER;

where:

Magic: This is the state of the mapped �le. If this contains anything other than 0x10
(the signature of the executable image), the �le will fail to load. PE64 �les bear
the 0x20 signature, because all addresses are 64-bit.

SizeOfCode: This �led describes the rounded-up size of all executable sections. Usually
viruses do not �x the value when adding a new code section to the host program.

AddessOfEntryPoint: The address where the execution of the image begins. This values is an RVA
(Relative Virtual Address) that normally points to the .text (or CODE) sec-
tion. RVA is relative to disk �le image. The equivalent memory address is:
MEMORY = ImageBase + RV A.
This �eld can be modi�ed by the virus to point to its viral code. If the virus
adds a new section and points the address of entry point to this new section,
many antiviral product can notice that the .text section is no more the main
entry point and can label the �le as infected.

ImageBase: When the linker creates a PE executable, it assumes that the image will be
mapped to a speci�c memory location. That address is stored in this �eld.
That address is a preferred address (currently 0x400000). If the table of relo-
catable elements is present, the �le can be loaded by any address other than
that speci�ed in the header. This �eld is used by most viruses before infection
to calculate the actual address of certain items, but is not usually changed.

SectionAlignment: When the executable is mapped into memory, each section must start at a
virtual address that is a multiple of this value. This �eld minimum is 0x1000
(4096 bytes). Most Win32 viruses use this �eld to calculate the correct location
for the virus body but do not change the �eld value.

FileAlignment: In the PE �le, the raw data starts at a multiple of this location. Viruses do not
change this values but use it in a similar way to SectionAlignment.

CAP. 3 Computer Architecture Dependency 42

� 3.5 File Format Dependency

SizeOfImage: When the linker creates the image, it calculates the total size of the portion
of the image that the loader has to load. This includes the size of the region
starting at the image base up through the end of the last section. The end of
the last section is rounded-up to the nearest multiple of the SectionAlignment.
Almost every PE infection method uses and changes the SizeOfImage value of
the PE header. Many virus calculate this �eld incorrectly and the loader as a
result won't load the infected �le.

Checksum: This is a checksum of the �le. Most executables contain zero in this �eld. All
DLLs and drivers, however, must have a correct checksum. Windows 95 loader
simply ignores the checking of this �eld before loading DLLs. This �eld is used
by some viruses to represent an infection marker to avoid double infections.
Another set of viruses recalculates it to hide an infection even better.

Data Directories

The data directory indicates where to �nd other important components of executable
information in the �le. It is really nothing more than an array of IMAGE_DATA_DIRECTORY
structures that are located at the end of the optional header structure. The current
PE �le format de�nes 16 possible data directories, 11 of which are now being used.

// Directory Entries

// Export Directory

#define IMAGE_DIRECTORY_ENTRY_EXPORT 0

// Import Directory

#define IMAGE_DIRECTORY_ENTRY_IMPORT 1

// Resource Directory

#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2

// Exception Directory

#define IMAGE_DIRECTORY_ENTRY_EXCEPTION 3

// Security Directory

#define IMAGE_DIRECTORY_ENTRY_SECURITY 4

// Base Relocation Table

#define IMAGE_DIRECTORY_ENTRY_BASERELOC 5

// Debug Directory

#define IMAGE_DIRECTORY_ENTRY_DEBUG 6

// Description String

#define IMAGE_DIRECTORY_ENTRY_COPYRIGHT 7

// Machine Value (MIPS GP)

#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8

// TLS Directory

#define IMAGE_DIRECTORY_ENTRY_TLS 9

// Load Configuration Directory

#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10

CAP. 3 Computer Architecture Dependency 43

� 3.5 File Format Dependency

Each data directory is basically a structure de�ned as an IMAGE_DATA_DIRECTORY.
And although data directory entries themselves are the same, each speci�c directory
type is entirely unique.

typedef struct _IMAGE_DATA_DIRECTORY {

ULONG VirtualAddress;

ULONG Size;

} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

Each data directory entry speci�es the size and relative virtual address of the directory.
To locate a particular directory, you determine the relative address from the data
directory array in the optional header. Then use the virtual address to determine
which section the directory is in. Once you determine which section contains the
directory, the section header for that section is then used to �nd the exact �le o�set
location of the data directory.
So to get a data directory, you �rst need to know about sections, which are described
next.
Some times the virus has to follow some of the addresses into the data directories
and change or use the values according to its needs. The two most important data
directories are "entry export" and the "entry import". The �rst is is a pointer to the
table of exported functions and data and will be encountered mainly in DLLs and
drivers. The second is a pointer to the table of imported functions (APIs) used for
communicating with the outside world.

PE File Section

The PE �le speci�cation consists of the headers de�ned so far and a generic object
called a section. Sections contain the content of the �le, including code, data, re-
sources, and other executable information. Each section has a header and a body
(the raw data). Section headers are described below, but section bodies lack a rigid
�le structure. They can be organized in almost any way a linker wishes to organize
them, as long as the header is �lled with enough information to be able to decipher
the data.
Section headers are located sequentially right after the optional header in the PE
�le format. Each section header is 40 bytes with no padding between them. Section
headers are de�ned as in the following structure:

#define IMAGE_SIZEOF_SHORT_NAME 8

typedef struct _IMAGE_SECTION_HEADER {

UCHAR Name[IMAGE_SIZEOF_SHORT_NAME];

union {

ULONG PhysicalAddress;

ULONG VirtualSize;

CAP. 3 Computer Architecture Dependency 44

� 3.5 File Format Dependency

} Misc;

ULONG VirtualAddress;

ULONG SizeOfRawData;

ULONG PointerToRawData;

ULONG PointerToRelocations;

ULONG PointerToLinenumbers;

USHORT NumberOfRelocations;

USHORT NumberOfLinenumbers;

ULONG Characteristics;

} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

where:

Name: Each section header has a name �eld up to eight characters long, for which the
�rst character must be a period.

PhysicalAddress: RVA address. VirtualSize is a union �eld that is not currently used.

VirtualAddress: This �eld identi�es the virtual address in the process's address space to which
to load the section. The actual address is created by taking the value of this
�eld and adding it to the ImageBase virtual address in the optional header
structure. Keep in mind, though, that if this image �le represents a DLL, there
is no guarantee that the DLL will be loaded to the ImageBase location requested.
So once the �le is loaded into a process, the actual ImageBase value should be
veri�ed programmatically using GetModuleHandle.

SizeOfRawData: This �eld indicates the FileAlignment-relative size of the section body. The ac-
tual size of the section body will be less than or equal to a multiple of FileAlign-
ment in the �le. Once the image is loaded into a process's address space, the size
of the section body becomes less than or equal to a multiple of SectionAlignment

PointerToRawData: This is an o�set to the location of the section body in the �le.

Characteristics: De�nes the section characteristics (attributes).

PointerToRelocations, PointerToLinenumbers, NumberOfRelocations, NumberOfLi-
nenumbers. None of these �elds are used in the PE �le format.

To infect a PE �le, the virus has to manipulate correctly the �le structures according
to the infection technique used. We will discuss later those infection techniques (see
XX).

3.5.4 ELF Viruses on UNIX

The executable and linking format (ELF) was originally developed by Unix System
Laboratories and is rapidly becoming the standard in �le formats. The ELF standard

CAP. 3 Computer Architecture Dependency 45

� 3.5 File Format Dependency

is growing in popularity because it has greater power and �exibility than the a.out and
COFF binary formats. ELF now appears as the default binary format on operating
systems such as Linux, Solaris 2.x, and SVR4. Some of the capabilities of ELF are
dynamic linking, dynamic loading, imposing runtime control on a program, and an
improved method for creating shared libraries. The ELF representation of control data
in an object �le is platform independent, an additional improvement over previous
binary formats. The ELF representation permits object �les to be identi�ed, parsed,
and interpreted similarly, making the ELF object �les compatible across multiple
platforms and architectures of di�erent size.
The three main types of ELF �les are executable, relocatable, and shared object �les.
These �le types hold the code, data, and information about the program that the
operating system and/or link editor need to perform the appropriate actions on these
�les. The three types of �les are summarized as follows:

• An executable �le supplies information necessary for the operating system to
create a process image suitable for executing the code and accessing the data
contained within the �le.

• A relocatable �le describes how it should be linked with other object �les to
create an executable �le or shared library.

• A shared object �le contains information needed in both static and dynamic
linking.

There are two views for each of the three �le types described in the previous section.
These views support both the linking and execution of a program. The two views
are summarized in Figure 3.8 where the view on the left of the �gure is the link
view and the view on the right of the �gure is the execution view. The link view
of the ELF object �le is partitioned by sections and the execution view of the ELF
object �le is partitioned by segments. Thus, the programmer interested in obtaining
section information about the program items such as symbol tables, relocation, speci�c
executable code or dynamic linking information will use the link view; the programmer
interested in obtaining segment information such as the location of the text segment
or data segment will use the execution view. The ELF access library, libelf, provides a
programmer with tools to extract and manipulate ELF object �le contents for either
view. The ELF header describes the layout of the rest of the object �le. It provides
information on where and how to access the other sections. The Section Header
Table gives the location and description of the sections and is mostly used in linking.
The Program Header Table provides the location and description of segments and
is mostly used in creating a programs' process image. Both sections and segments
hold the majority of data in an object �le including: instructions, data, symbol table,
relocation information, and dynamic linking information.
The ELF header structure is :

#define EI_NIDENT 16

CAP. 3 Computer Architecture Dependency 46

� 3.5 File Format Dependency

Figure 3.8: Linking and Execution Views.

typedef struct {

unsigned char e_ident[EI_NIDENT];

Elf32_Half e_type;

Elf32_Half e_machine;

Elf32_Word e_version;

Elf32_Addr e_entry;

Elf32_Off e_phoff;

Elf32_Off e_shoff;

Elf32_Word e_flags;

Elf32_Half e_ehsize;

Elf32_Half e_phentsize;

Elf32_Half e_phnum;

Elf32_Half e_shentsize;

Elf32_Half e_shnum;

Elf32_Half e_shstrndx;

} Elf32_Ehdr;

The meaning of the �elds are listed below:

e_ident: The initial bytes mark the �le as an object �le and provide machine-independent
data with which to decode and interpret the �le's contents. Complete descrip-
tions appear below, in "ELF Identi�cation."

CAP. 3 Computer Architecture Dependency 47

� 3.5 File Format Dependency

e_type: This member identi�es the object �le type.

Name Value Meaning

==== ===== =======

ET_NONE 0 No file type

ET_REL 1 Relocatable file

ET_EXEC 2 Executable file

ET_DYN 3 Shared object file

ET_CORE 4 Core file

ET_LOPROC 0xff00 Processor-specific

ET_HIPROC 0xffff Processor-specific

e_machine: This member's value speci�es the required architecture for an individual �le.

Name Value Meaning

==== ===== =======

EM_NONE 0 No machine

EM_M32 1 AT&T WE 32100

EM_SPARC 2 SPARC

EM_386 3 Intel 80386

EM_68K 4 Motorola 68000

EM_88K 5 Motorola 88000

EM_860 7 Intel 80860

EM_MIPS 8 MIPS RS3000

Other values are reserved and will be assigned to new machines as

necessary. Processor-specific ELF names use the machine name to

distinguish them. For example, the flags mentioned below use the

prefix EF_; a flag named WIDGET for the EM_XYZ machine would be

called EF_XYZ_WIDGET.

e_version: This member identifies the object file version.

Name Value Meaning

==== ===== =======

EV_NONE 0 Invalid version

EV_CURRENT 1 Current version

The value 1 signi�es the original �le format; extensions will create new versions
with higher numbers. The value of EV_CURRENT, though given as 1 above,
will change as necessary to re�ect the current version number.

e_entry: This member gives the virtual address to which the system �rst transfers control,
thus starting the process. If the �le has no associated entry point, this member
holds zero.

CAP. 3 Computer Architecture Dependency 48

� 3.5 File Format Dependency

e_pho�: This member holds the program header table's �le o�set in bytes. If the �le has
no program header table, this member holds zero.

e_sho�: This member holds the section header table's �le o�set in bytes. If the �le has
no section header table, this member holds zero.

e_�ags: This member holds processor-speci�c �ags associated with the �le. Flag names
take the form EF_<machine>_<�ag>.

e_ehsize: This member holds the ELF header's size in bytes.

e_phentsize: This member holds the size in bytes of one entry in the �le's program header
table; all entries are the same size.

e_phnum: This member holds the number of entries in the program header table. Thus
the product of e_phentsize and e_phnum gives the table's size in bytes. If a
�le has no program header table, e_phnum holds the value zero.

e_shentsize: This member holds a section header's size in bytes. A section header is one
entry in the section header table; all entries are the same size.

e_shnum: This member holds the number of entries in the section header table. Thus the
product of e_shentsize and e_shnum gives the section header table's size in
bytes. If a �le has no section header table, e_shnum holds the value zero.

e_shstrndx: This member holds the section header table index of the entry associated with
the section name string table. If the �le has no section name string table, this
member holds the value SHN_UNDEF.

The program header gives a runtime-views of the �le.

typedef struct {

Elf32_Word p_type;

Elf32_Off p_offset;

Elf32_Addr p_vaddr;

Elf32_Addr p_paddr;

Elf32_Word p_filesz;

Elf32_Word p_memsz;

Elf32_Word p_flags;

Elf32_Word p_align;

} Elf32_Phdr;

where:

p_type: This member tells what kind of segment this array element describes or how
to interpret the array element's information. Type values and their meanings
appear below.

CAP. 3 Computer Architecture Dependency 49

� 3.5 File Format Dependency

p_o�set: This member gives the o�set from the beginning of the �le at which the �rst
byte of the segment resides.

p_vaddr: This member gives the virtual address at which the �rst byte of the segment
resides in memory.

p_paddr: On systems for which physical addressing is relevant, this member is reserved for
the segment's physical address. Because System V ignores physical addressing
for application programs, this member has unspeci�ed contents for executable
�les and shared objects.

p_�lesz: This member gives the number of bytes in the �le image of the segment; it may
be zero.

p_memsz: This member gives the number of bytes in the memory image of the segment;
it may be zero.

p_�ags: This member gives �ags relevant to the segment. De�ned �ag values appear
below.

p_align: Loadable process segments must have congruent values for p_vaddr and p_o�set,
modulo the page size. This member gives the value to which the segments
are aligned in memory and in the �le. Values 0 and 1 mean no alignment is
required. Otherwise, p_align should be a positive, integral power of 2, and
p_vaddr should equal p_o�set, modulo p_align. Possible values of this �elds
can be found in elf.h �le.

An executable or shared object �le's base address is calculated during execution from
three values: the memory load address, the maximum page size, and the lowest virtual
address of a program's loadable segment. The virtual addresses in the program head-
ers might not represent the actual virtual addresses of the program's memory image.
To compute the base address, one determines the memory address associated with the
lowest p_vaddr value for a PT_LOAD segment. One then obtains the base address
by truncating the memory address to the nearest multiple of the maximum page size.
Depending on the kind of �le being loaded into memory, the memory address might
or might not match the p_vaddr values.
The section header describes the sections of the ELF �le.

typedef struct {

Elf32_Word sh_name;

Elf32_Word sh_type;

Elf32_Word sh_flags;

Elf32_Addr sh_addr;

Elf32_Off sh_offset;

Elf32_Word sh_size;

Elf32_Word sh_link;

CAP. 3 Computer Architecture Dependency 50

� 3.5 File Format Dependency

Elf32_Word sh_info;

Elf32_Word sh_addralign;

Elf32_Word sh_entsize;

} Elf32_Shdr;

where:

sh_name: This member speci�es the name of the section. Its value is an index into the sec-
tion header string table section, giving the location of a null-terminated string.

sh_type: This member categorizes the section's contents and semantics. Section types
and their descriptions appear below.

sh_�ags: Sections support 1-bit �ags that describe miscellaneous attributes. Flag de�ni-
tions appear below.

sh_addr: If the section will appear in the memory image of a process, this member gives
the address at which the section's �rst byte should reside. Otherwise, the mem-
ber contains 0.

sh_o�set: This member's value gives the byte o�set from the beginning of the �le to the
�rst byte in the section. One section type, SHT_NOBITS described below,
occupies no space in the �le, and its sh_o�set member locates the conceptual
placement in the �le.

sh_size: This member gives the section's size in bytes. Unless the section type is SHT_NOBITS,
the section occupies sh_size bytes in the �le. A section of type SHT_NOBITS
may have a non-zero size, but it occupies no space in the �le.

sh_link: This member holds a section header table index link, whose interpretation de-
pends on the section type. A table below describes the values.

sh_info: This member holds extra information, whose interpretation depends on the sec-
tion type. A table below describes the values.

sh_addralign: Some sections have address alignment constraints. For example, if a section
holds a doubleword, the system must ensure doubleword alignment for the entire
section. That is, the value of sh_addr must be congruent to 0, modulo the
value of sh_addralign. Currently, only 0 and positive integral powers of two are
allowed. Values 0 and 1 mean the section has no alignment constraints.

sh_entsize: Some sections hold a table of �xed-size entries, such as a symbol table. For
such a section, this member gives the size in bytes of each entry. The member
contains 0 if the section does not hold a table of �xed-size entries.

CAP. 3 Computer Architecture Dependency 51

� 3.5 File Format Dependency

Figure 3.9: The Mach-O File Format

3.5.5 Mach-O Viruses on Mac OS X

The Mach-O �le format belongs to the modern �les structure as PE and ELF. It is
composed by a main header containing information common to all �les, and a vari-
able number of segments (Load Commands) which can contain zero or more sections
(Figure 3.9).
The Mach header appears at the beginning of the object �le. Only information that's
truly general to the �le is contained in the Mach header. Other information is put in
the load commands that follow.
The format of the Mach header is:

struct mach_header {

unsigned long magic; /* Mach magic number identifier */

cpu_type_t cputype; /* cpu specifier */

cpu_subtype_t cpusubtype; /* machine specifier */

unsigned long filetype; /* type of file */

unsigned long ncmds; /* number of load commands */

unsigned long sizeofcmds; /* size of all load commands */

unsigned long flags; /* flags */

};

The load commands appear directly after the Mach header. They are variable in size.
The number of load commands and the total size of the commands are given in the

CAP. 3 Computer Architecture Dependency 52

� 3.5 File Format Dependency

ncmds and sizeofcmds �elds of the mach_header structure.
All load commands must have as their �rst two �elds cmd and cmdsize. The following
structure is the minimum form of a load command:

struct load_command {

unsigned long cmd; /* type of load command */

unsigned long cmdsize; /* total size of command in bytes */

};

Constants for the cmd �eld of the load_command structure are:

#define LC_SEGMENT 0x1 /* file segment to be mapped */

#define LC_SYMTAB 0x2 /* link-edit stab symbol table info

(obsolete) */

#define LC_SYMSEG 0x3 /* link-edit gdb symbol table info */

#define LC_THREAD 0x4 /* thread */

#define LC_UNIXTHREAD 0x5 /* UNIX thread (includes a stack) */

#define LC_LOADFVMLIB 0x6 /* load a fixed VM shared library */

#define LC_IDFVMLIB 0x7 /* fixed VM shared library id */

#define LC_IDENT 0x8 /* object identification information

(obsolete) */

#define LC_FVMFILE 0x9 /* fixed VM file inclusion */

We give below the explanation of two of the most signi�cant Load Commands.

The LC_SEGMENT Load Command

The LC_SEGMENT load command indicates that a part of this �le is to be mapped
into the task's address space. The size of this segment in memory, vmsize, can be
equal to or larger than the amount to map from this �le, �lesize. The �le, starting at
�leo�, is mapped to the beginning of the segment in memory at vmaddr. The rest of
the memory of the segment, if any, is allocated zero-�ll on demand.

struct segment_command {

unsigned long cmd; /* LC_SEGMENT */

unsigned long cmdsize; /* includes size of section

structures */

char segname[16]; /* segment's name */

unsigned long vmaddr; /* segment's memory address */

unsigned long vmsize; /* segment's memory size */

unsigned long fileoff; /* segment's file offset */

unsigned long filesize; /* amount to map from file */

vm_prot_t maxprot; /* maximum VM protection */

vm_prot_t initprot; /* initial VM protection */

unsigned long nsects; /* number of sections */

unsigned long flags; /* flags */

};

CAP. 3 Computer Architecture Dependency 53

� 3.5 File Format Dependency

The segment's maximum virtual memory protection and initial virtual memory pro-
tection are speci�ed by the maxprot and initprot �elds. The values for these �elds are
set to some combination of the constants de�ned in the header �le vm/vm_prot.h:

#define VM_PROT_NONE ((vm_prot_t) 0x00)

#define VM_PROT_READ ((vm_prot_t) 0x01) /* read permission */

#define VM_PROT_WRITE ((vm_prot_t) 0x02) /* write permission */

#define VM_PROT_EXECUTE ((vm_prot_t) 0x04) /* execute permission */

/* The default protection for newly created virtual memory */

#define VM_PROT_DEFAULT \

(VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE)

/* Maximum privileges possible, for parameter checking. */

#define VM_PROT_ALL \

(VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE)

A segment's address and virtual memory protection are set at link edit time.
A segment is made up of zero or more sections. If the segment contains sections, the
section structures directly follow the segment command and their size is re�ected in
the cmdsize �eld.
If sections have the same section name and are going into the same segment, they're
combined by the link editor. The resulting section is aligned to the maximum align-
ment of the combined sections and is the new section's alignment. The combined
sections are aligned to their original alignment in the combined section. Any padded
bytes used to get the speci�ed alignment are zero-�lled.

struct section {

char sectname[16]; /* section's name */

char segname[16]; /* segment the section is in */

unsigned long addr; /* section's memory address */

unsigned long size; /* section's size in bytes */

unsigned long offset; /* section's file offset */

unsigned long align; /* section's alignment */

unsigned long reloff; /* file offset of relocation entries */

unsigned long nreloc; /* number of relocation entries */

unsigned long flags; /* flags */

unsigned long reserved1; /* reserved */

unsigned long reserved2; /* reserved */

};

S_ZEROFILL is used for the uninitialized data sections; sections with literal �ags
cause the link editor to coalesce redundant literals into sections and perform the
proper relocation, resulting in a smaller �le.

CAP. 3 Computer Architecture Dependency 54

� 3.6 Interpreted Environment Dependency

The LC_THREAD and LC_UNIXTHREAD Load Commands

Thread commands contain machine-speci�c data structures suitable for use in the
thread state primitives.The machine-speci�c data structures follow the struct thread_command
or struct unixthread_command as follows: Each �avor of machine-speci�c data struc-
ture is preceded by an unsigned long constant for the �avor of that data structure
and an unsigned long that's the count of longs of the size of the state data structure,
and then the state data structure follows that. This triple may be repeated for many
�avors.

struct thread_command {

unsigned long cmd; /* LC_THREAD or LC_UNIXTHREAD */

unsigned long cmdsize; /* sizeof(struct thread_command) */

/* unsigned long flavor flavor of thread state */

/* unsigned long count count of longs in thread state */

/* struct XXX_thread_state state flavor's thread state */

/* . . . */

};

The LC_UNIXTHREAD load command describes the register values for the main
thread in the �le.Yes, that includes Program Counter register (EIP on intel's machine
or SV1 on PowerPC architectures). By changing this value we can control the main
entry point of the program.

3.6 Interpreted Environment Dependency

Interpreted environments are very common in modern computers environment. The
interpreted scrips have the advantage that are platform-independent. Unix systems
are full of bash and perl scripts. Modi�cation of most script �le is allowed. Most
frequently, scripts comprise hundreds of code lines, in which it is easy to get lost.
Capabilities of scripts are comparable to those of high-level programming languages
such as C,Basic, Pascal.
Also almost every major applications support users with programmability. This is the
case of Microsoft's Word and Excel, or even GNU applications such as Octave, gdb.
So every programmable environment can lead to a possible virus.

CAP. 3 Computer Architecture Dependency 55

� 3.6 Interpreted Environment Dependency

Interpreted language environment
Perl/Python practically omnipresent in unix derived environments

Bash unix
VBA/VBS and Macro Visual Basic scripts can infect Word and Excel

documents and the Windows OS
Jscript can be dangerous if invoke an ActiveX communication

objects
PHP can run in command line mode.

Table 3.2: Some of the most known interpreted languages that can be used to write
viruses.

CAP. 3 Computer Architecture Dependency 56

Chapter 4

Classi�cation of Infection strategies

4.1 Boot Viruses

Boot sector viruses take advantage of the boot process of personal computers (PCs).
Because most computers do not contain an operating system in their read-only mem-
ory (ROM), they need to load the system from somewhere else, such as from a disk
or from a network.
When the PC starts up, it gives control to a ROM-BIOS routine that has to load
the boot sector from the selected disk. The boot sector is loaded into the 0:7C00
memory address and the control is given to it. Typically the boot sequence try to
read a diskette. If no disk is present then it would read the hard disks boot record.
A removable disk structure has a disk boot sector (DBR Disk Boot Record) that con-
tains all the information about the disk structure such as number of sectors, number
of tracks, sectors per track and so on.
Indeed a hard disk is much bigger than a �oppy and can be divided into a maximum
of four partitions (each can be divided again). So in hard disks there is a Master Boot
Record (MBR) that has a table of those partitions and a simple boot-strap code that
let load the operative system in the selected partition. A little trick that some MBR
viruses use is to change the CMOS settings of the BIOS so a PC think that it has no
�oppy drives. Thus, the PC will boot using the infected MBR and then, when the
virus is executed, it checks if there is a �oppy drive present.
We describe a few techniques below that can be applied to both MBR and DBR.

4.1.1 Replacing the Boot Record without saving it

This technique overwrites the boot strap code leaving the Partition Table (PT) entries
in place in case of MBR without saving the boot sector anywhere. When infecting a
Boot Sector the virus must perform the function of the original boot sector code.
When disinfecting the original bot sector cannot be retrieved any more. So a new one
(standard) is placed into the right sector(s) of the disk.

CAP. 4 Classi�cation of Infection strategies 57

� 4.2 File Infection Techniques

4.1.2 Replacing the Boot Record making a copy of it

A class of boot viruses replaces the original boot sector by overwriting it and saving
it in a free or unused sector of the disk. Rudimental viruses just store the original
sector in a free sector with the hope that this sector is not used in the future.
Advanced viruses take care of the original bot sector safety because if the disk don't
boot correctly the virus wont spread any more. There are several techniques to safe
the original boot sector. The virus can mark the sector as a BAD sector so the
operative system wont use this sector for storing information. Ora virus can resize a
disk partition and store the original boot sector out of all the partitions on the disk.
In that manner the sector is not used by the operative system.

4.1.3 Boot Viruses that mark sectors as BAD

Some times a virus is too small ti �t into a single sector (the default is 512 bytes). So
multiple sectors are required to store the virus into the disk. To protect from being
overwrited, the virus can mark the sectors used to store its own code (or a copy of
the original boot sector) as a BAD sector. Thus these sectors wont be used by the
operative system even if they are not physically damaged.

4.2 File Infection Techniques

4.2.1 Overwriting Viruses

Some viruses simply locate another �le on the disk and overwrite it with their own
copy. Of course this is a very primitive technique, but it is certainly the easiest
approach of all.
Overwriting viruses cannot be disinfected from a system. Infected �les must be deleted
from the disk and restored from backups.
Overwriting viruses are easily discovered from the users because programs don't act
as they should any more. So this class of viruses don't spread very much.
Anyway during the early 1990s, many virus writers attempted to write the shortest
possible binary virus using this technique. Some of the virus are as short as 22 bytes
(Trivial.22).
The algorithm for such viruses is simple:

• Search for any (*.*) new host �le in the current directory.

• open �le for writing.

• write the virus code on top of the host.

The shortest viruses are often unable to infect more than a single host program in the
same directory in which the virus was executed. This because �nding the next host
�le would be "as expensive" as a couple of bytes of extra code.

CAP. 4 Classi�cation of Infection strategies 58

� 4.2 File Infection Techniques

+----------------+

|PPPPPPPPPPPPPPPP| clean program

+----------------+

+----+-----------+

|VVVV|PPPPPPPPPPP| infected program

+----+-----------+

4.2.2 Random Overwriting Viruses

Another rare variation of the overwriting method does not change the code of the
program at the top of the host �le. Instead, the virus seeks to a random location in
the host program and overwrites the �le with itself at that location. Evidently, the
virus code might not even get control during execution of the host. In both cases ,
the host program is lost during the virus's attack and often crashes before the virus
code can execute.

+----------------+

|PPPPPPPPPPPPPPPP| clean program

+----------------+

+-----+---+------+

|PPPPP|VVV|PPPPPP| infected program

+-----+---+------+

4.2.3 Appending Viruses

A common techniques introduced with DOS COM �les is to place a jump (JMP)
instruction at the front of the host to gain the execution �ow. The jump instruction
points to the virus code appended at the end of the original host �le. The jump

+-----------+

|PPPPPPPPPPP| clean program

+-----------+

+-+----------+---+

|V|PPPPPPPPPP|VVV| infected program

+-+----------+^--+

|_____________|

(jmp)

instruction is sometimes replaced with equally functional instructions, such as the
following:

CAP. 4 Classi�cation of Infection strategies 59

� 4.2 File Infection Techniques

• CALL start_of_virus.

• PUSH o�set start_of_virus
ret.

Obviously the appender technique can be implemented for any other type of exe-
cutable �le, such as EXE, PE, ELF, Mach-O, and so on. Such �les have in their
header sections all the important values that can be used by the virus, such as the
address of the main entry point.

4.2.4 Prepending Viruses

A common virus infection technique uses the principle of inserting virus code at the
front of host programs. Such viruses are called prepending viruses.This is a simple
kind of infection, and it is often very successful. Virus writer have implemented it on
various operating system.
When a virus is written in assembler and it infects a COM �le then it is simple for
the virus to start the original host program. The virus copied the host code at the
COM entry point (that is �xed at cs:0x100), and gives it control.
Prepender virus are often written in high-level languages such as C. Depending on
the actual structure of the executable, the execution of the original program might
not be as trivial task as it is for COM �les. This is why a generic solution involves
creation of a new temporary �le on the disk to hold the content of the original host
program. Then a sys-call, such as system(), is used to execute the original program
in the temporary �le.

+-----------+

|PPPPPPPPPPP| clean program

+-----------+

+----+-----------+

|VVVV|PPPPPPPPPPP| infected program

+----+-----------+

4.2.5 Classic Parasitic Viruses

A variation of the prepender technique is known as the classic parasitic infection.
Such viruses overwrite the top of the host with their own code and save the top of
the original host program to the very end of the host, usually virus-size long.
Some special parasitic infectors Instead of saving the top of the host to the end of
it, use a temporary �le to store this information outside of the �le, sometimes with
hidden attributes.

CAP. 4 Classi�cation of Infection strategies 60

� 4.2 File Infection Techniques

4.2.6 Cavity Viruses

Cavity viruses do not increase the size of the object they infect. Instead they overwrite
a part of the �le that can be used to store the virus code safely. Cavity infectors
typically overwrite areas of �les that contains zeroes or 0x20 (blank space).
A variation of cavity infection is called fractioned cavity technique. In this case the
virus code is split between a loader routine and N number of section that contains
blank spaces or zeroes. The loader (HEAD) routine of the virus locates the snippets
of the virus code and read them into a continuous area of the memory.

4.2.7 Compressing Viruses

A special virus infection technique uses the approach of compressing the content of
the host program. Sometimes this technique is used to hide the host's program size
increase after the infection by packing the host program su�ciently with a binary
packing algorithm.

4.2.8 Crypting Viruses

Some class of viruses can infect the host program with a crypted copy of its code.
This technique is used to prevent antiviral software from detect them. A special class
of these viruses can use a di�erent class of crypting algorithm at every infection. So
the virus can assume a di�erent form each time it infect a program. This class of
viruses is called polymorphic viruses and it is discussed more in detail later (??).
Crypting viruses must carry with them at each infection the decryptor routine, that
has to decrypt the body of the virus before its execution.

4.2.9 Entry-Point Obscuring (EPO) Viruses

Entry point obscuring viruses do not change the entry point of the application to
infect it, neither do they change the code at the entry point. Instead, they change
the program code somewhere in such a way that the virus gets control randomly.

Function Call Hooking

A common technique of EPO viruses is to locate a function call reliably in the appli-
cation's code section to a subroutine of the program. Because the pattern of a CALL
instruction could be a part of another instruction's data, the virus would not be able
to identify the instruction boundaries properly by looking for CALL instruction alone.
To solve this problem, viruses often check to see whether the CALL instruction points
to a pattern that appears to be the start of a typical subroutine call similar to the
following:

CAP. 4 Classi�cation of Infection strategies 61

� 4.2 File Infection Techniques

call Function

...

Function:

push %ebp

movl %esp,%ebp

API-Hooking Technique on Win32

On Win32 systems, EPO techniques became highly advanced. The PE �le format can
be attacked in di�erent ways. One of the most common EPO techniques is based on
the hooks of an instruction pattern in the program's code section. A typical Win32
application makes a lot of calls to APIs. Many Win32 EPO viruses take advantage
of API CALL points and change these pointers to their own start code.
Once a CALL instruction is located in the host program's code section, the virus makes
sure that it points to the import directory. In this way, the virus can reliably identify
byte patterns that belong to a function call. After that, the CALL instruction is
modi�ed in such way that it will point to the start of the virus code located elsewhere,
Typically appended to the end of the �le. Such viruses typically search for one or
both API call implementation:

Microsoft API Implementation CALL DWORD PTR[]
Borland API Implementation JMP DWORD PTR[]

The selection of functions to replace is often random, and the virus might not even
get control each time a host program is executed. Viruses that want to execute every-
time the host program runs can hook the ExitProcrss() API, that is called whenever
the application exits back to the system. Normally disk activity increases whenever
the application exits. This appends for several di�erent reasons. For example, if an
application has used a lot of virtual memory, the operating system will need to do
a lot of paging, which increases disk activity. Thus it is likely that viruses like this
remain unnoticed for a long time.

Import Table Replacing on Win32

Newer Win32 viruses infect Win32 executables in such a way that they do not need
to modify the original code of the program to take control. To get control, the virus
simply changes the import address table entries of the PE host in such a way that
each API call of the application via the import address directory will run the virus
code instead. The virus saves the original import address table entries so that after

CAP. 4 Classi�cation of Infection strategies 62

� 4.2 File Infection Techniques

its own code execution it can call properly the API originally wanted by the host
application.

CAP. 4 Classi�cation of Infection strategies 63

Chapter 5

Classi�cation of In-Memory strategies

5.1 Direct-Action Viruses

Some of the simplier viruses do not remain active in memory. They simply load with
the host program and perform infection before or after the host program has executed.
Direct-action viruses typically use a FindFirst-FindNext sequence to look for a set of
victim application to attack. Typically such viruses only infect a couple of �les upon
execution otherwise the user can notice an overload of disk activity.

5.2 Memory-Resident Viruses

A much e�cient class of computer viruses remains in memory after the initialization
of virus code. Such viruses typically follow these steps:

• The virus gets control of the system

• It allocates a block of memory for its own code

• It relocates its code to the allocated block of memory

• It activates itself in the allocated memory block

• It hooks the execution of the code �ow to itself

• It infects new �les and/or system areas

This is the most typical pattern, but several other methods exist that do not require
all of the preceding steps.
On single-tasking operating systems such as DOS, only a single-user application can
run at any one time; any other program code needs to make itself TSR (Terminate
and Stay Resident).
A common technique to gain the execution of the code �ow on DOS, is to hook one

CAP. 5 Classi�cation of In-Memory strategies 64

� 5.3 Stealth Viruses

INT ID Function/Category intercepted/Used by Virus Code

int 00 Divide Error/CPU generated Antidebugging, Anti-Emulation
int 01 Single Step/CPU generated Ante-Debbugging, EPO
int 03 Breakpoint/CPU generated Anti-Debugging, Tracing
int 08 System Timer/CPU generated Activation routine, Anti-debugging
int 09 Keyboard/BIOS Anti-debugging, password stealing
int 1C System Timer Tick/BIOS Activation routine
int 20 Terminate Program/DOS Kernel Infect on Exit
int 21 DOS Service/DOS Kernel Infection, Stealth, Activation routine
int 25 Absolute Disk Read/DOS Kernel Disk Infection, Stealth
int 26 Absolute Disk Write/DOS Kernel Disk Infection, Stealth
int 27 TSR/DOS Kernel Remain in memory
int 28 IDLE interrupt/DOS Kernel to perform an action while idle

Table 5.1: Typical Interrupts Used by Computer Viruses

or more interrupts. A virus can hook the timer interrupt (int 0x1C) and take control
periodically.
The boot viruses used to hook the int 0x13 disk interrupt handler and start to monitor
its functions, wait for diskette access for read and write, and during such operation
write their code (or part of it) into the boot sector of the diskettes.
Table 5.1 shows common interrupts and their typical use by computer viruses.

5.3 Stealth Viruses

Stealth Viruses always intercept a single function or a set of functions in such a way
that the caller of the function will receive manipulated data from the hook routine
of the virus. One of the �rst-known viruses on the PC, Brain (a boot virus), was
already stealth. Brain showed the original boot sector whenever an infected sector
was accessed and the virus was active in memory. The virus hooked the int 13h and
returned manipulated data to the interrupt caller.
The stealth technique also quickly appeared in DOS �le infector viruses. This method
was a sure way for a virus to go unnoticed for a relatively long period of time. In
fact, in the DOS days, users would remember sizes of system �les in an attempt to
apply their own integrity checking. By knowing the original size of a �le such as
COMMAND.COM, the commander interpreter was halfway to success in �nding an
on-going infection.
We call a virus semistealth if it hides the change of the �le size but the changed
content of the infected objects remains visible via regular �le access.

CAP. 5 Classi�cation of In-Memory strategies 65

� 5.4 Viruses in Processes (in User Mode)

5.4 Viruses in Processes (in User Mode)

On modern multitasking operating systems, viruses need to use slightly di�erent
strategies. The virus code does not have to become "resident" in the traditional
sense. It is usually enough if the virus runs itself as a part of the process. Memory
space is divided into security rings. Ring zero is assigned the the system kernel and
have plain control of the machine. User's program runs on the last level (four) and
have the lowest security level. Thus application normally do not interfere with the
system kernel, as DOS programs do.
An attacker has several options:

• The virus loads with the infected process, gets control, creates a thread (or a
set of threads) in the running process itself in the user mode, and infects �les
using regular direct-action technique.

• a virus can run in its own process in user mode. It can fork, and remain active
in memory in an in�nite loop.

On UNIX systems the �le system is designed for security and a virus that runs in
user-mode can access another �le only if it has the right privileges.

5.5 Viruses in Kernel Mode

When a virus gains ring zero with privilege escalation, it has the total control of
the machine. Now it can alter all the system �les and the infection of the system is
done on its roots. If a stealth technique is used from ring zero then we have the so
called ROOTKIT. The �rst generation of rootkits modi�ed some strategical system
�les so that viral �les of viral e�ects resulted invisible to any user. In Unix systems
the �rst generation of rootkits simply substitute critical system programs that listed
processes, network connections and �lesystem data such as ps, netstat,and ls. But
if a user (or superuser) executed a clean version of those programs (or other similar
programs) from a clean boot, all the hidding system is bypassed and the viral attack
can be discovered.
The second generation of rootkits attacked directly the kernel hooking directly sys-
tem call to modify users request that can reveal the system infection such as linting
processes, listing network connections, and �lesystem data. Thus any program is
launched by the corrupted kernel, it returns altered data.

CAP. 5 Classi�cation of In-Memory strategies 66

Chapter 6

Advanced Virus Techniques

6.1 Armored Viruses

A computer virus's primary goal is to spread as far as possible without being noticed.
The authors of armored viruses want to be sure that the virus code is di�cult for
scanners to detect, even if scanners use techniques such as heuristic that can pinpoint
previously unknown computer viruses. Furthermore, if a virus sample is obtained by
any means, its author wants to make the analysis of the virus code as di�cult as
possible to further delay rapid response to the virus attack.
The following sections describe basic methods of armored viruses.

6.1.1 Antidisassembly

Computer viruses written in Assembly language are challenging to understand because
they often use tricks that normal programs never or very rarely use.
One of the most obvious ways to avoid disassembling is to use encrypted data in the
virus code. All content data in the virus can be encrypted. When the virus is loaded
into the disassembler, the virus code will reference encrypted snippets, which you
need to decrypt one by one to understand what the virus does with them, making
virus analysis en even more tedious process.
Another possibility for the attacker to challenge disassembling is to use some sort of
self-modifying code. When the code is examined in the disassembler, it might not be
easily read (Figure 6.1).

CAP. 6 Advanced Virus Techniques 67

� 6.1 Armored Viruses

movl $0x100,%ecx movl $0x3f,%ecx

movw $0x40,%ah incl %ecx

int $0x21 xchgw %cl,%ch

xchl %ecx,%eax

movl $0x100, %ecx

int $0x21

Figure 6.1: Example of slightly obfuscated code.

Another technique to trick old disassemblers was to put a single data byte into the
code so that the disassembler would get confused interpretating the opcodes (Figure
6.2).

pusha pusha

call near ptr loc_4013E6+1 call loc_4013E7

loc_4013E6: db 0B8h

mov eax, 0B1C9335Bh loc_4013E7:

add bl,ah pop ebx

dec ecx xor ecx,ecx

mov byte ptr [ebx+5], 0 mov cl,0

lea edi, [ebx+400h] jecxz short near ptr unk_401437

mov al,[ebp+10h] mov byte ptr [ebx+5], 0

dec al les edi, [ebx+400h]

(opcode mixing) (correctly disassembled code)

Figure 6.2: Opcode mixing code confusion

In the example above the CALL/POP pair ensures the correct code execution,
but old disassemblers get confused because inserted the 0xB8 (MOV) opcode into the
code �ow.
A CALL to a POP instruction is a common sequence in computer viruses to adjust
for their location in the �le.

6.1.2 Antidebugging

The debugging activity is about to execute the code step by step or to execute a
portion of code via a breakpoint for evaluating and inspect registers or variables. So
a common technique to avoid debugging is to hook strategical interrupts such as int1
and int3. Typically those interrupts point to a simple IRET routine. A virus can
hook these interrupts to do other things such as decrypt their body, or execute next
instruction. This will completely by-pass the debugger.
On Windows 9x the interrupt descriptor table (IDT) can be manipulated from user

CAP. 6 Advanced Virus Techniques 68

� 6.1 Armored Viruses

mode and some virus, like the W95/CIH virus did, used this technique to jump to
kernel mode ans at the same time avoided the debugger.
Some set of virus, like Whale virus, can take advantage from intrinsic characteristic
of hardware such as the prefetch-queue of the CPU. With this method a virus can
change the opcode of an instruction that was already prefetched by the processor,
confusing the debugger.
When you a are tracing a code, you are using the keyboard. A very brutal antide-
bugging technique is to disable the keyboard to prevent you from continuing to trace,
perhaps by recon�guring the content of the I/O PORT 0x21 or PORT 0x61. Such
ports might be di�erent according to how modern operating system map them.

6.1.3 Antiheuristics

In 1998, Windows virus development was in a relatively early stage. This is why
a wide variety of di�erent infection methods were introduced, making it possible to
consider heuristic analysis against 32-bit Windows viruses. Heuristic analysis can de-
tect unknown viruses and closely related variants of existing viruses using static and
dynamic methods. Static heuristic rely on �le format and common code fragment
analysis. Dynamic heuristic use code emulation to mimic the processor and the oper-
ating system environment and detect suspicious operations as the code is "running"
in the virtual machine of the scanner.
Careful analysis of di�erent infection types led to the development of �rst generation
Win32 heuristic detectors, which used static heuristics. Static heuristics are capable
of pinpointing suspicious portable executable (PE) �le structures and therefore can
catch �rst-generation 32-bit Windows viruses with a very high detection rate. The
idea was based on DOS virus detection that uses similar methods.
By the end of 1999, many new virus replication methods had already been developed.
Moreover, a major part of 32-bit Windows viruses used some sort of encryption, poly-
morphic, or metamorphic technique. Encrypted viruses are more di�cult to detect
and vary dangerous when we look ahead to the future of scanning. This is because
scanners can become very slow in attempting decryption for too many clean �les on
your system.
First-generation heuristics were extremely successful against PE �le viruses. Even
virus writers were surprised by their success, but we did not have to wait long before
they came up with attacks against heuristic detectors.
We describe below attacks against �rst-generation Win32 heuristic.

New PE File-Infection Techniques

Many PE �le viruses add a new section or append to the last section of PE �les. This
heuristic has the bene�t that can be performed easily by end user. The heuristic checks
to see if the entry point of the PE �le points to the last section of the application.
A large number of commercial PE �le on-the-�y packers were introduced for Win32

CAP. 6 Advanced Virus Techniques 69

� 6.1 Armored Viruses

platforms, such as UPX, Neolite, Petite, Shrink32, ASPack, and so on. Such packers
are commonly used by virus writers and Trojan code creators to hide their creations.
They can use advanced antiheuristics techniques such as encrypting suspicious string
or insert code or section not at the last position.

More Than One Virus Section

Several Win32 viruses append not only to one section but to many sections at a time.
For instance the W32/Resure virus appends four sections (.text, .rdata, .data, and
.reloc) to each PE host. Because the entry point of the application will be changed
to point into the new .text section of the virus and because it will not be the last
section, the heuristic fools.

Entry-Point Obscuring

This is one of the most powerful antiheuristic of ever. This technique was already
discussed in earlier chapters(4.2.9).

No CALL-to-POP Trick

Most 32-bit Windows appending viruses use the CALL-to-POP trick to locate the
start address for their data relocations. Because �rst-generation heuristics could easily
look for that, virus writers tried to implement new ways to get the base address of
the code.
A common way is to use the opcode mixing code confusion technique (Figure 6.2).

6.1.4 Antiemulation

Dynamic heuristic use code emulation to mimic the processor and the operating sys-
tem. Some virus writer introduced antiemulation techniques against the strongest
component of the antivirus product: the emulator.
We describe below some of the antiemulation techniques that have been used by virus
writers over the years.

Using the Coprocessor (FPU) Instructions

Some virus writers realized the power of emulators and looked for weaknesses and
quickly realized that coprocessor emulation was not implemented. Infact most emu-
lators skipped coprocessor instructions until recently, whereas most processors that
are currently used support coprocessor instruction by default.

CAP. 6 Advanced Virus Techniques 70

� 6.1 Armored Viruses

Using MMX Instruction

Other virus writers went so far as to implement a virus that used the MMX (multi-
media extension) instructions of Pentium processors.
Even these instructions where not implemented in antiviral emulator.

Using Undocumented CPU Instructions

Although there are not too many undocumented Intel processor instructions, there
are a few. For example, W95/Vulcano virus uses the undocumented SALC instruction
in its polymorphic decryptor as garbage to stop the processor emulators of certain
antivirus that cannot handle it. Intel claims that SALC can be emulated as a NOP
(a no-operation instruction). Hardly a NOP, this instruction sets AL=FFh if the
carry �ag is set (CF=1), or resets AL to zero if the carry �ag is clear(CF=0). Some
emulators' implementation of these instruction might di�er subtly from the processor's
so that a virus could detect when it is executing under emulation.

Using Brute-Force Decryption of Virus Code

Some viruses, use a brute-force algorithm also known as RDA (Random Decryption
Algorithm) to decrypt themselves. This method was used by DOS viruses, such as
Spanska virus variants and some older Russian viruses, such as the RDA family. All
of these old tricks of virus writers have been recycled in Win32 viruses. Brute-force
decryption does not use �xed keys but tries to determine the actual method and the
proper keys by trial and error. This logic is relatively fast in the case of real-time
execution, but it generates very long loops causing zillions of emulation iterations,
ensuring that the actual virus body will not be reached easily.

Using Multithreaded Virus Functionality

Many viruses tried to use threads to give emulators a hard time. Emulators were �rst
used to emulate DOS applications. DOS only supported single-threaded execution, a
much simpler model for emulators than the multithreaded model.
Emulation of multithreaded Windows applications is challenging because the synchro-
nization of various threads is crucial but rather di�cult.

6.1.5 Aggressive Retroviruses

A retrovirus is a computer virus that speci�cally tries to bypass or hinder the opera-
tion of an antivirus, personal �rewall, or other security programs.
There are many possible way for an attacker to achieve this because most Windows
users work with their administrative privileges. This give computer viruses the po-
tential to kill the processes and �les that belong to antivirus software or to disable
antivirus programs.

CAP. 6 Advanced Virus Techniques 71

� 6.2 Polymorphic Viruses

Retroviruses have the potential to make way for other computer viruses that are oth-
erwise known and easy for the antivirus software to handle. Therefore, virus writers
routinely reverse engineer antivirus products to learn tricks that can be used in retro
attacks.

6.2 Polymorphic Viruses

6.2.1 Encrypted Viruses

From the very early days, virus writers tried to implement virus code evolution. One
of the easiest ways to hide the functionality of the virus code was encryption. The
�rst known virus that implemented encryption was Cascade on DOS. The virus starts
with a constant decryptor, which is followed by encrypted virus body. Consider the
example extracted from Cascade.1701 shown in Figure 6.3.

lea si, Start ; position to decrypt (dynamically set)

mov sp, 0682 ; lenght of encrypted body

Decrypt:

xor [si],si ; decryption key/counter 1

xor [si],sp ; decryption key counter 2

inc si ; increment one counter

dec sp ; decrement the other

jnz Decrypt ; loop until all bytes are decrypted

Start: ; Encrypted/Decrypted Virus Body

Figure 6.3: The Decryptor of the Cascade Virus.

Note that this decryptor has antidebugging features because the SP (stack pointer)
register is used as one of the decryption keys. The direction of the decryption loop is
always forward; the SI register is incremented by one.
Cascade appends itself to the �les, so SI will result in the same value if the two hosts
have the same size. However, the SI (decryption key 1) is changed if the host pro-
grams have di�erent size. The core of the encryption algorithm consists of only two
XOR instruction. XOR is very practical for viruses because XORing with the same
value twice results in the initial value.
Cryptographically speaking, such encryption is weak, though early antivirus programs
had little choice but to pick a detection string from the decryptor itself. This led to
a number of problems, however. Several di�erent viruses might have the same de-
cryptor, but might have completely di�erent functionalities. By detecting the virus
based on its decryptor, the product in unable to identify the variant or the virus itself.

CAP. 6 Advanced Virus Techniques 72

� 6.2 Polymorphic Viruses

More importantly, non-viruses, such as antidebugging wrappers, might have a similar
decryptor in front of their code. As a result, the virus that uses the same code to
decrypt itself will confuse them.
The attacker can implement more complicated, further confusing the antivirus pro-
gram's detection and repair routines:

• The direction of the loop can change.

• Multiple layers of encryption are used. The �rst decryptor decrypts the second
one, the second decrypts the third, and so on.

• several encryption loops take place one after another, with randomly selected
directions.

• There is only one decryption loop, but is uses more than two keys to decrypt
each encrypted piece of information on the top of the others.

• Start of the decryptor is obfuscated.

• Nonlinear decryption is used.

6.2.2 Oligomorphic Viruses

Unlike encrypted viruses, oligomorphic viruses do change their decryptors in new gen-
erations. The simplest technique to change the decryptor is to use a set of decryptors
instead of a single one. The �rst known virus to use this technique was Whale. Whale
carried a few dozen di�erent decryptors, and the virus picked one randomly.
W95/Memorial had the ability to build 96 di�erent decryptor patterns. Thus the de-
tection of the virus based on the decryptor code was an impractical solution, though
a possible one. Most products tried to deal with the virus by dynamic decryption of
the encrypted code. The detection is still based on the constant code of the decrypted
virus body.
In Figures 6.4 and 6.5 there are shown two variant of the Memorial virus decryptor.
Notice the appearance of a "loop" instruction in this instance, as well as the swapped
instructions in the front of the decryptor. A virus is said to be oligomorphic if it is
capable of mutating its decryptor only slightly.

6.2.3 Polymorphic Viruses

Polymorphic viruses can mutate their decryptors to a high number of di�erent in-
stances that can take millions of di�erent forms.
The �rst known polymorphic virus is the 1260 virus. The virus uses two sliding keys
to decrypt its body, but more importantly, it inserts junk instructions into its decryp-
tor. These instructions are garbage in the code. They have no function other than
altering the appearance of the decryptor.

CAP. 6 Advanced Virus Techniques 73

� 6.2 Polymorphic Viruses

mov ebp,00405000h ; select base

mov ecx,0550h ; this many bytes

lea esi,[ebp+0000002E] ; offset of "Start"

add ecx,[abp+00000029] ; plus this many bytes

mov al,[ebp+0000002D] ; pick the first key

Decrypt:

nop ; junk

nop ; junk

xor [esi],al ; decrypt a byte

inc esi ; next byte

nop ; junk

inc al ; slide the key

dec ecx ; are there any more bytes to decrypt?

jnz Decrypt ; until all bytes are decrypted

jmp Start ; decryption done, execute body

;Data area

Start

; encrypted/decrypted virus body

Figure 6.4: An Example Decryptor of the W95/Memorial Virus.

CAP. 6 Advanced Virus Techniques 74

� 6.2 Polymorphic Viruses

mov ecx,0550h ; this many bytes

mov ebp,013BC000h ; select base

lea esi,[ebp+0000002E] ; offset of "Start"

add ecx,[abp+00000029] ; plus this many bytes

mov al,[ebp+0000002D] ; pick the first key

Decrypt:

nop ; junk

nop ; junk

xor [esi],al ; decrypt a byte

inc esi ; next byte

nop ; junk

inc al ; slide the key

loop Decrypt ; until all bytes are decrypted

jmp Start ; decryption done, execute body

;Data area

Start

; encrypted/decrypted virus body

Figure 6.5: A Slightly Di�erent Decryptor of the W95/Memorial Virus.

Virus scanners were challenged by 1260 because simple search strings could no longer
be extracted from the code. Although 1260's decryptor is very simple, it can become
shorter or longer according to the number of inserted junk instructions and random
padding after the decryptor for up to 39 bytes of junk instructions. In addition, each
group of instructions (prolog, decryption, and increments) within the decryptor can
be permutated in any order. Thus the "skeleton" of the decryptor can change as well.
In Figure 6.6 there is an extract of one of the variations of the 1260 virus. In each
group of instructions, up to �ve junk instructions are inserted (INC SI, CLC, NOP,
and other do-nothing instructions) with no repetitions allowed in the junk. There are
two NOP junk instructions that always appear.

CAP. 6 Advanced Virus Techniques 75

� 6.2 Polymorphic Viruses

; Group 1 - Prolog Instructions

inc si ;optional, variable junk

mov ax,0E9B ; set key 1

clc ; optional variable junk

mov di,012A ; offset of Start

nop ; optional, variable junk

mov cx,0571 ; this many bytes - key 2

; Group 2 - Decryption Instructions

Decrypt:

xor [di],cx ; decrypt first word with key 2

sub bx,dx ; optional, variable junk

xor bx,cx ; optional, variable junk

sub bx,ax ; optional, variable junk

sub bx,cx ; optional, variable junk

nop ; non-optional junk

xor dx,cx ; optional, variable junk

xor [di],ax ; decrypt first word with key 1

; Group 3 - Decryption Instructions

inc di ; next byte

nop ; non-optional junk

clc ; optional, variable junk

inc ax ; slide key 1

loop Decrypt ; until all bytes are decrypted - slide key 2

;random padding

Start:

; encrypted/decrypted virus body

Figure 6.6: An Example Decryptor of 1260 virus.

CAP. 6 Advanced Virus Techniques 76

Part II

Emulation Environments

77

Chapter 7

Viruses and Arti�cial Life

In this chapter, we examine the question of whether a virus represents or not a form of
arti�cial life. The �rst, and obvious, question is "What is life?". Without an answer
to this question, we will be unable to say if a computer virus is "alive." One very
reasonable list of properties associated with life was presented in the list below:

• Life is a pattern in space-time rather than a speci�c material object.

• Self-reproduction, in itself or in a related organism.

• Information storage of a self-representation.

• A metabolism that converts matter/energy.

• Functional interactions with the environment.

• Interdependence of parts.

• Stability under perturbations of the environment.

• The ability to evolve.

• Growth or expansion.

Let us examine each of these characteristics in relation to computer viruses.

7.1 Viruses as patterns in space-time

There is a near match to this characteristic. Viruses are represented by patterns
of computer instructions that exist over time on many computer systems. Viruses
are not associated with the physical hardware, but with the instructions executed
(sometimes) by that hardware. Computer viruses, like all functional computer code,
are simply manifestations of algorithms. The algorithms themselves also represent an
underlying pattern.

CAP. 7 Viruses and Arti�cial Life 78

� 7.2 Self-reproduction of viruses

It is questionable if these patterns exist in space, however, unless one extends the
de�nition of space to "cyberspace" as represented by a computer system. The patterns
of the viruses are a temporary set of electrical and magnetic �eld changes in the
memory or storage of computer systems. The existence of the virus is only within
these patterns of energy. Arguably, the code for each virus could be printed in ink
on paper, resulting in a more substantiative existence. That, however, is merely a
representation of the true virus, and should not be viewed as existence any more than
a picture of a person is itself the person.

7.2 Self-reproduction of viruses

One of the primary characteristics of computer viruses is their ability to reproduce
themselves (or an altered version of themselves). Thus, this characteristic seems to
be met. One of the key characteristics is their ability to reproduce.
However, it is perhaps more interesting to examine this aspect in light of the agent of
reproduction. The virus code is not itself the agent; the computer is. It is questionable
if this can be considered su�cient for purposes of classi�cation as arti�cial life. To do
so would imply that (for instance) the blueprints for a Xerox machine are capable of
self-reproduction: when outside agents follow the instructions therein, it is possible to
produce a new machine that can then be used to make a copy of them. It is not the
blueprint (algorithm; virus) that is the agent of change, but the entity that interprets
it.

7.3 Information storage of a self-representation

This is the most obvious match for computer viruses. The code that de�nes the virus
is a template that is used by the virus to replicate itself. This is similar to the DNA
molecules of what we recognize as organic life.

7.4 Virus metabolism

This property involves the organism taking in energy or matter from the environment
and using it for its own activity. Computer viruses use the energy of computation
expended by the system to execute. They do not convert matter, but make use of
the electrical energy present in the computer to traverse their patterns of instructions
and infect other programs. In this sense, they have a metabolism.
Again, however, we are forced to change this view if we examine the case more closely.
The expenditure of energy is not by the virus, but by the underlying computer system.
If the virus were not active, and an interactive game were being run instead, the same
amount of energy would be used. In most systems, even if no program is being run,

CAP. 7 Viruses and Arti�cial Life 79

� 7.5 Functional interactions with the viruses environment

the energy use remains constant. Thus, we must conclude that viruses do not actually
have a metabolism.

7.5 Functional interactions with the viruses environ-
ment

Viruses perform examinations of their host environments as part of their activities.
They alter interrupts, examine memory and disk architectures, and alter addresses to
hide themselves and spread to other hosts. They very obviously alter their environ-
ment to support their existence. Many viruses accidentally alter their environment
because of bugs or unforeseen interactions. The major portion of damage from all
computer viruses is a result of these interactions.

7.6 Interdependence of virus parts

Living organisms cannot be arbitrarily divided without destroying them. The same
is true of computer viruses. Should a computer virus have a portion of its anatomy
excised, the virus would probably cease to function normally, if at all. Few viruses
are written with super�uous code, and even so, the working code cannot be divided
without disabling the virus.
However, it is interesting to note that the virus can be reassembled later and regain its
functional status. If a living organism (as we know them) were to be divided into its
component parts for a period of time, then reassembled, it would not become "alive"
again. In this sense, computer viruses are more like simple machines or chemical
reactions rather than instances of living things.

7.7 Virus stability under perturbations

Computer viruses run on a variety of machines under di�erent operating systems.
Many of them are able to compromise (and defeat) anti-virus and copy protection
mechanisms. They may adjust on-the-�y to conditions of insu�cient storage, disk
errors, and other exceptional events. Some are capable of running on most variants of
popular personal computers under almost any software con�guration; a stability and
robustness seen in few commercial applications.

7.8 Virus evolution

Here, too, viruses display a di�erence from systems we traditionally view as alive. No
computer viruses evolve as we commonly use the term, although it is conceivable that
a very complex virus could be programmed to evolve and change. However, such a

CAP. 7 Viruses and Arti�cial Life 80

� 7.9 Growth

virus would be so large and complex as to be many orders of magnitude larger than
most host programs, and probably bigger than the host operating systems. Thus,
there is some doubt that such a virus could run on enough hosts to allow it to evolve.
(Note that "evolve" implies a change in function or attributes; polymorphic viruses
represent cases of random changes in structure but not functionality.)
Higher-level mutations of viruses do exist, however. There are variants of many known
viruses, with over a dozen known for some IBM PC viruses. The variations involved
can be very small, on the order of two or three instructions di�erence, to major
changes involving di�erences in messages, activation, and replication. The source of
these variations appears to be programmers (the original virus authors or otherwise)
who alter the viruses to avoid anti-viral mechanisms, or to cause di�erent kinds of
damage. Polymorphic viruses alter their copies to avoid detection, but the pattern of
alteration is ultimately a human product. These changes do not constitute evolution,
however.
Interestingly, there is also one case where two di�erent strains of a Macintosh virus are
known to interact to form infections unlike the parents, although these interactions
usually produce sterile o�spring that are unable to reproduce further. This likewise
does not appear to be evolution as we know it.

7.9 Growth

Viruses certainly do exhibit a form of growth, in the sense that there are more of
them in a given environment over time. Some transient viruses will infect every �le
on a system after only a few activations. The spread of viruses through commercial
software and public bulletin boards is another indication of their wide-spread repli-
cation. Although accurate numbers are di�cult to derive, reports over the last few
years indicate an approximate yearly doubling in the number of systems infected by
computer viruses. Clearly, computer viruses are exhibiting signi�cant growth.

7.10 Other behavior

As already noted, computers viruses exhibit species with well-de�ned ecological niches
based on host machine type, and variations within these species. These species are
adapted to speci�c environments and will not survive if moved to a di�erent environ-
ment.
Some viruses also exhibit predatory behavior. For instance, the DenZuk virus will
seek out and overwrite instances of the Brain virus if both are present on the same
system. Other viruses exhibit territorial behavior, marking their infected domain so
that others of the same type will not enter and compete with the original infection.
Some viruses also exhibit self-protective behavior, including camou�age techniques.
It is important to note, however, that none of these characteristics came from the

CAP. 7 Viruses and Arti�cial Life 81

� 7.11 Concluding Comments

viruses themselves. Rather, each change and addition to virus behavior has been
wrought by an outside agency: the programmer. These changes have been in reaction
to a perceived need to "enhance" the virus; usually to make it more di�cult to �nd.
It might well be argued that more traditional living organisms may also undergo
change from without. As an example, background radiation may cause occasional
random mutations. However, programmers are the only source of change to computer
viruses, and this distinction is worth noting; other living systems undergo changes to
themselves and their progeny without obvious outside agencies.

7.11 Concluding Comments

Our study of computer viruses at �rst suggests they are close to what we might de�ne
as "arti�cial life." However, upon closer examination, a number of signi�cant de�cien-
cies can be found. These lead us to conclude that computer viruses are not "alive,"
nor is it possible to re�ne them so as to make them "alive" without drastically altering
our de�nition of "life."
Undoubtedly, we could adjust our de�nitions and characteristics to encompass com-
puter viruses or to better exclude them. This illustrates one of the fundamental
di�culties with the entire �eld of arti�cial life: how to de�ne essential characteristics
in such a way as to unambiguously de�ne living systems. Computer viruses provide
one interesting example against which such de�nitions may be tested.
From this, we can observe that computer viruses (and their kin) provide an interesting
means of modeling life. For at least this reason, research into computer viruses may
be of some scienti�c interest. By modeling behavior using computer viruses, we may
be able to gain some insight into systems with more complex interactions. Research
into competition among computer viruses and other software, including anti-viral
techniques, is of practical interest as well as scienti�c interest. Modi�ed versions of
viruses such as Thimbleby's Liveware may also prove to be of ultimate value. Research
into issues on virus defense methods, epidemiology, and on mutations and combina-
tions also could provide valuable insight into computing.
The problem with research on computer viruses is their threat. True viruses are
inherently unethical and dangerous. They operate without consent or knowledge, ex-
perience has shown that they cannot be recalled or controlled, and they may cause
extensive losses over many years. Even viruses written to be benign cause signi�cant
damage because of unexpected interactions and bugs.
The origin of most computer viruses is one of unethical practice. Viruses created
for malicious purposes are obviously bad; viruses constructed as experiments and re-
leased into the public domain would likewise be unethical, and poor science besides:
experiments without controls, strong hypotheses, and the consent of the subjects.
Facetiously, I suggest that if computer viruses evolve into something with arti�cial
consciousness, this might provide a doctrine of "original sin" for their theology.
Computer viruses have caused millions of dollars of damage and untold aggravation.

CAP. 7 Viruses and Arti�cial Life 82

� 7.11 Concluding Comments

Some of them have been written as harmless experiments that "got away," and others
as malicious mischief. A great many of them have �rmly rooted themselves in the pool
of available computers and storage media, and they are likely to be frustrating users
and harming systems for years to come. Similar but considerably more tragic results
could occur from careless experimentation with organic forms of arti�cial life. We
must never lose sight of the fact that "real life" is of much more importance than "ar-
ti�cial life," and we should not allow our experiments to threaten our experimenters.

CAP. 7 Viruses and Arti�cial Life 83

Chapter 8

The WiCE Language

The WiCE language is derived from the 1994 Red Code standard (ICWS'94). Red
Code is a language used for many emulators such as CoreWars. The language is very
simple. It is a kind of Assembly language without no registers. The data are read,
manipulated and stored into the memory. The early '88 standard of Red Code was
made of a few basic instructions with only direct, immediate and indirect address
mode and with no instruction modi�er. One of the most important things that the
'94 standard of Red Code brought was modi�ers and new addressing modes. In the
old '88 standard the addressing modes alone decide which parts of the instructions are
a�ected by an operation. For example, MOV 1, 2 always moves a whole instruction,
while MOV #1, 2 moves a single number. (and always to the B-�eld!).
WiCE di�ers only a little on the ICWS'94 syntax. The only di�erences are listed in
Table 8.1.

Instruction type ICWS'94 WiCE Language
assert directive ;assert <expression> assert <expression>
labels label label :
for/rof construct implemented not yet implemented

Table 8.1: Di�erences between ICWS'94 and WiCE language.

The assert directive has the semicolon in ICWS'94 like any other comment, but
in WiCE language assert is not preceded bay any semicolon.
Labels are ended bay a colon in WiCE language. Indeed in the ICWS'94 they are
ended by a blank or space character.
And last the for/rof construct in not yet been implemented on WiCE language.
Maybe it will in next versions.

CAP. 8 The WiCE Language 84

� 8.1 The Grammar

8.1 The Grammar

The grammar used by the WiCE language is listed below:

list--> line | line list

line--> comment | instruction | directive

comment--> ; v* EOL | EOL

directive--> assert_d | org_d | equ_d

assert_d--> ASSERT bexpr

org_d--> ORG label

equ_d--> label EQU expr

instruction--> label_list operation mode expr comment |

label_list operation mode expr , mode expr comment

label_list--> label | label label_list | label newline label_list | e

label--> alpha alphanumeral* :

operation--> opcode | opcode.modifier

opcode: DAT | MOV | ADD | SUB | MUL | DIV | MOD |

JMP | JMZ | JMN | DJN | CMP | SLT | SPL |

ORG | EQU | END | CPIN | CTIN | CPOUT | CTOUT

modifier--> A | B | AB | BA | F | X | I

mode--> # | $ | @ | < | > | { | } | e

bexpr--> expr < expr | expr == expr | expr <= expr |

expr != expr | expr

expr--> term |

term + expr | term - expr |

term * expr | term / expr |

term % expr

term--> label | number | (expression)

number--> whole_number | signed_integer

signed_integer--> +whole_number | -whole_number

whole_number--> numeral+

alpha--> A-Z | a-z | _

numeral--> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

alphanumeral--> alpha | numeral

v--> ^EOL

EOL--> newline | EOF

newline--> LF | CR | LF CR | CR LF

e-->

CAP. 8 The WiCE Language 85

� 8.2 Run-time Variables

8.2 Run-time Variables

In addition to the variables de�ned in its own code, every warrior can access a set
of global variables created by the WiCE environment. These global variables are
injected in compile-time into the table of variables of each warrior.
The global variables refers to the actual environment in which the warrior runs.
Run-time variables consist of the following:

CORESIZE : the size of the memory array. The default is 8000.

WARRIORS : the initial number of warriors to battle simultaneously in the arena.

MAXPROCESSES : each warrior can spawn multiple additional threads. This variable sets the
maximum number of thread allowed per warrior. the default is 1000.

MAXCYCLES : this is the maximum CPU cycles. After that the battle is declared as a tie. the
default is 10000.

MAXLENGTH : this is the maximum lenght in terms of instruction code allowed by each warrior
(the size of the warrior). The default is 200.

MINDISTANCE : this is the minimum distance between warriors when they are allocated in the
arena by the emulator. The default is 200.

VERSION : this is the version number of the WiCE emulator.

8.3 General De�nitions

• An instruction consists of an opcode, a modi�er, an A-operand, and a B-
operand.

• An A-operand consists of an A-mode and an A-number.

• An A-mode is the addressing mode of an A-operand.

• An A-number is an integer between 0 and M-1, inclusive.

• A B-operand consists of a B-mode and a B-number.

• A B-mode is the addressing mode of a B-operand.

• A B-number is an integer between 0 and M-1, inclusive.

CAP. 8 The WiCE Language 86

� 8.4 Speci�c De�nitions

8.4 Speci�c De�nitions

• The program counter (PC) is the pointer to the location in core of the instruc-
tion fetched from core to execute. Some times the program counter is called
Instruction Pointer (IP).

• The current instruction is the instruction in the instruction register, as copied
(prior to execution) from the PC location of core.

• The A-pointer points to the instruction the A-operand of the current instruction
references in core.

• The A-instruction is a copy of the instruction the A-pointer points to in core
(as it was during operand evaluation).

• The A-value is the A-number and/or the B-number of the A-instruction or the
A-instruction itself, whichever are/is selected by the opcode modi�er.

• The B-pointer points to the instruction the B-operand of the current instruction
references in core.

• The B-instruction is a copy of the instruction the B-pointer points to in core
(as it was during operand evaluation).

• The B-value is the A-number and/or the B-number of the B-instruction or the
B-instruction itself, whichever are/is selected by the opcode modi�er.

• The B-target is the A-number and/or the B-number of the instruction pointed
to by the B-pointer or the instruction itself, whichever are/is selected by the
opcode modi�er.

8.5 Instruction Set

The number of instructions in Redcode has grown with each new standard, from the
original number of about 5 to the current 18 or 19. And this doesn't even include the
new modi�ers and addressing modes that allow literally hundreds of combinations.
Luckily, we don't need to learn all the combinations. It is enough to remember the
instructions, and how the modi�ers change them.
Here is a list of all the instructions used in WiCE language:

• DAT � data (kills the process)

• MOV � move (copies data from one address to another)

• ADD � add (adds one number to another)

CAP. 8 The WiCE Language 87

� 8.5 Instruction Set

• SUB � subtract (subtracts one number from another)

• MUL � multiply (multiplies one number with another)

• DIV � divide (divides one number with another)

• MOD � modulus (divides one number with another and gives the remainder)

• JMP � jump (continues execution from another address)

• JMZ � jump if zero (tests a number and jumps to an address if it's 0)

• JMN � jump if not zero (tests a number and jumps if it isn't 0)

• DJN � decrement and jump if not zero (decrements a number by one, and jumps
unless the result is 0)

• SPL � split (starts a second process at another address)

• CMP � compare (same as SEQ)

• SEQ � skip if equal (compares two instructions, and skips the next instruction
if they are equal)

• SNE � skip if not equal (compares two instructions, and skips the next instruc-
tion if they aren't equal)

• SLT � skip if lower than (compares two values, and skips the next instruction if
the �rst is lower than the second)

• LDP � load from p-space (loads a number from private storage space)

• STP � save to p-space (saves a number to private storage space)

• NOP � no operation (does nothing)

• CTIN � Communication between Threads IN channel.

• CTOUT � Communication between Threads OUT channel.

• CPIN � Communication between Processes IN channel.

• CPOUT � Communication between Processes OUT channel.

All WiCE instructions are executed following the same procedure:

1. The currently executing warrior's current task pointer is extracted from the
warrior's task queue and assigned to the program counter.

CAP. 8 The WiCE Language 88

� 8.5 Instruction Set

2. The corresponding instruction is fetched from core and stored in the instruction
register as the current instruction.

3. The A-operand of the current instruction is evaluated.

4. The results of A-operand evaluation, the A-pointer and the A-instruction, are
stored in the appropriate registers.

5. The B-operand of the current instruction is evaluated.

6. The results of B-operand evaluation, the B-pointer and the B-instruction, are
stored in the appropriate registers.

7. Operations appropriate to the opcode.modi�er pair in the instruction register
are executed. With the exception of DAT instructions, all operations queue an
updated task pointer. (How the task pointer is updated and when it is queued
depend on instruction execution).

8.5.1 pseudo-instructions

"ORG" ("ORiGin") is a way for the source assembly �le to indicate the logical ori-
gin of the warrior. The A-operand contains an o�set to the logical �rst instruction.
Thus "ORG 0" means execution should start with the �rst instruction (the default)
whereas "ORG 6" means execution should start with the seventh instruction."ORG
label" is allowed also and the label's address is solved on the second pass of the parser.
Although multiple ORG instructions are of no additional bene�t to the programmer,
they are allowed. When there is more than one ORG instruction in a �le, the last
ORG instruction encountered will be the one that takes e�ect.

"EQU" ("EQUate") is a simple text substitution utility. Instructions of the form
"label EQU expression" will replace all occurrences of "label" with the equivalent
solution of the expression.

The "ASSERT" is followed by a logical expression. If it's false, the program will
not be compiled. In C, a value of 0 means false and anything else means true. The
logical and comparison operators return 1 for true, a fact which can be useful later.
It can be used to make sure the program really works with the current settings. Typ-
ically, "ASSERT" is used to check that the size of the core is the one the constants
have been designed for, like "assert CORESIZE == 8000".

"END" indicates the logical end of the assembly �le. If an END instruction is found
by the parser, the the parsing process exits and all eventually instructions that follows
the END won't be compiled.

CAP. 8 The WiCE Language 89

� 8.5 Instruction Set

8.5.2 DAT

It has two purpose. The �rst is to store program's data. The second is to kill the
process that executes this instruction. The execution of a DAT e�ectively removes
the currently executing process from the process queue.

8.5.3 MOV

Move replaces the B-target with the A-value and queues the next instruction (PC +
1). MOV is one of the few instructions that support .I, and that's its default behavior
if no modi�er is given (and if neither of the �elds uses immediate addressing).

8.5.4 ADD

ADD replaces the B-target with the sum of the A-value and the B-value (A-value
+ B-value) and queues the next instruction (PC + 1). ADD.I functions as ADD.F
would.
Notice that all math in WiCE is done modulo CORESIZE.

8.5.5 SUB

SUB replaces the B-target with the di�erence of the B-value and the A-value (B-value -
A-value) and queues the next instruction (PC + 1). SUB.I functions as SUB.F would.

8.5.6 MUL

MUL replaces the B-target with the product of the A-value and the B-value (A-value
* B-value) and queues the next instruction (PC + 1). MUL.I functions as MUL.F
would.

8.5.7 DIV

DIV replaces the B-target with the integral result of dividing the B-value by the A-
value (B-value / A-value) and queues the next instruction (PC + 1). DIV.I functions
as DIV.F would. If the A-value is zero, the B-value is unchanged and the current task
is removed from the warrior's task queue.

8.5.8 MOD

MOD replaces the B-target with the integral remainder of dividing the B-value by
the A-value (B-value % A-value) and queues the next instruction (PC + 1). MOD.I
functions as MOD.F would. If the A-value is zero, the B-value is unchanged and the
current task is removed from the warrior's task queue.

CAP. 8 The WiCE Language 90

� 8.5 Instruction Set

8.5.9 JMP

MP queues the sum of the program counter and the A-pointer.

8.5.10 JMZ

JMZ tests the B-value to determine if it is zero. If the B-value is zero, the sum of
the program counter and the A-pointer is queued. Otherwise, the next instruction
is queued (PC + 1). JMZ.I functions as JMZ.F would, i.e. it jumps if both the
A-number and the B-number of the B-instruction are zero.

8.5.11 JMN

JMN tests the B-value to determine if it is zero. If the B-value is not zero, the sum
of the program counter and the A-pointer is queued. Otherwise, the next instruction
is queued (PC + 1). JMN.I functions as JMN.F would, i.e. it jumps if both the A-
number and the B-number of the B-instruction are non-zero. This is not the negation
of the condition for JMZ.F.

8.5.12 DJN

DJN decrements the B-value and the B-target, then tests the B-value to determine if
it is zero. If the decremented B-value is not zero, the sum of the program counter and
the A-pointer is queued. Otherwise, the next instruction is queued (PC + 1). DJN.I
functions as DJN.F would, i.e. it decrements both both A/B-numbers of the B-value
and the B-target, and jumps if both A/B-numbers of the B-value are non-zero.

8.5.13 CMP

CMP compares the A-value to the B-value. If the result of the comparison is equal,
the instruction after the next instruction (PC + 2) is queued (skipping the next
instruction). Otherwise, the the next instruction is queued (PC + 1).

8.5.14 SLT

SLT compares the A-value to the B-value. If the A-value is less than the B-value,
the instruction after the next instruction (PC + 2) is queued (skipping the next
instruction). Otherwise, the next instruction is queued (PC + 1). SLT.I functions as
SLT.F would.

8.5.15 SPL

SPL queues the next instruction (PC + 1) and then queues the sum of the program
counter and A-pointer. If the queue is full, only the next instruction is queued.

CAP. 8 The WiCE Language 91

� 8.6 Address Modes

8.5.16 CTIN

CTIN queues the next instruction (PC + 1). It stores the incoming values of the intra-
process communication in both A-�eld and B-�eld. Then the data can be accessed as
the DAT instruction. However its execution doesn't kill the process.

8.5.17 CTOUT

CTOUT queues the next instruction (PC + 1). It send both values in the A-�eld and
B-�eld to the intra-process communication channel. All address modes are valid.

8.5.18 CPIN

CPIN queues the next instruction (PC + 1). It stores the incoming values of the inter-
process communication in both A-�eld and B-�eld. Then the data can be accessed as
the DAT instruction. However its execution doesn't kill the process.

8.5.19 CPOUT

CPOUT queues the next instruction (PC + 1). It send both values in the A-�eld and
B-�eld to the inter-process communication channel. All address modes are valid.

8.6 Address Modes

The WiCE language has 8 addressing modes:

• # � immediate

• $ � direct (the $ may be omitted)

• * � A-�eld indirect

• @ � B-�eld indirect

• { � A-�eld indirect with predecrement

• < � B-�eld indirect with predecrement

• } � A-�eld indirect with postincrement

• > � B-�eld indirect with postincrement

One important thing to remember about the predecrement and postincrement
modes is that the pointers will be in-/decremented even if they're not used for any-
thing. So JMP -1, <100 would decrement the instruction 100 even if the value it
points to isn't used for anything. Even DAT <50, <60 will decrement the addresses
in addition to killing the process.

CAP. 8 The WiCE Language 92

� 8.6 Address Modes

8.6.1 Immediate

An immediate mode operand merely serves as storage for data. An immediate A/B-
mode in the current instruction sets the A/B-pointer to zero.

8.6.2 Direct

A direct mode operand indicates the o�set from the program counter. A direct A/B-
mode in the current instruction means the A/B-pointer is a copy of the o�set, the
A/B-number of the current instruction.

8.6.3 Indirect

An indirect mode operand indicates the primary o�set (relative to the program
counter) to the secondary o�set (relative to the location of the instruction in which
the secondary o�set is contained). An indirect A/B-mode indicates that the A/B-
pointer is the sum of the A/B-number of the current instruction (the primary o�set)
and the B-number of the instruction pointed to by the A/B-number of the current
instruction (the secondary o�set).

8.6.4 Predecrement Indirect

A predecrement indirect mode operand indicates the primary o�set (relative to the
program counter) to the secondary o�set (relative to the location of the instruction
in which the secondary o�set is contained) which is decremented prior to use. A
predecrement indirect A/B-mode indicates that the A/B-pointer is the sum of the
A/B-number of the current instruction (the primary o�set) and the decremented B-
number of the instruction pointed to by the A/B-number of the current instruction
(the secondary o�set).

8.6.5 Postincrement Indirect

A postincrement indirect mode operand indicates the primary o�set (relative to the
program counter) to the secondary o�set (relative to the location of the instruction
in which the secondary o�set is contained) which is incremented after the results
of the operand evaluation are stored. A postincrement indirect A/B-mode indicates
that the A/B-pointer is the sum of the A/B-number of the current instruction (the
primary o�set) and the B-number of the instruction pointed to by the A/B-number
of the current instruction (the secondary o�set). The B-number of the instruction
pointed to by the A/B-number of the current instruction is incremented after the
A/B-instruction is stored, but before the B-operand is evaluated (for post-increment
A-mode), or the operation is executed (for post-increment indirect B-mode).

CAP. 8 The WiCE Language 93

� 8.7 Modi�ers

8.7 Modi�ers

The modi�ers are su�xes that are added to the instruction to specify which parts
of the source and the destination it will a�ect. For example, MOV.AB 4, 5 would
move the A-�eld of the instruction 4 into the B-�eld of the instruction 5. There are
7 di�erent modi�ers available:

• MOV.A � moves the A-�eld of the source into the A-�eld of the destination

• MOV.B � moves the B-�eld of the source into the B-�eld of the destination

• MOV.AB � moves the A-�eld of the source into the B-�eld of the destination

• MOV.BA � moves the B-�eld of the source into the A-�eld of the destination

• MOV.F � moves both �elds of the source into the same �elds in the destination

• MOV.X � moves both �elds of the source into the opposite �elds in the desti-
nation

• MOV.I � moves the whole source instruction into the destination

Naturally the same modi�ers can be used for all instructions, not just for MOV. Some
instructions like JMP and SPL, however, don't care about the modi�ers.
Since not all the modi�ers make sense for all the instructions, they will default to the
closest one that does make sense. The most common case involves the .I modi�er: To
keep the language simple and abstract no numerical equivalents have been de�ned for
the OpCodes, so using mathematical operations on them wouldn't make any sense
at all. This means that for all instructions except MOV, SEQ and SNE (and CMP
which is just an alias for SEQ) the .I modi�er will mean the same as the .F.
When modi�ers are omitted, WiCE will put default modi�ers (Table 8.2).

8.7.1 A

Instruction execution proceeds with the A-value set to the A-number of the A-
instruction and the B-value set to the A-number of the B-instruction. A write to
core replaces the A-number of the instruction pointed to by the B-pointer.
For example, a CMP.A instruction would compare the A-number of the A-instruction
with the A-number of the B-instruction. A MOV.A instruction would replace the
A-number of the instruction pointed to by the B-pointer with the A-number of the
A-instruction.

CAP. 8 The WiCE Language 94

� 8.7 Modi�ers

Instruction Default Modi�er

DAT, NOP Always .F, but it's ignored

MOV, SEQ, If A-mode is immediate, .AB,
SNE, CMP if B-mode is immediate and A-mode isn't, .B,

if neither mode is immediate, .I.

ADD, SUB, If A-mode is immediate, .AB,
MUL, DIV, MOD if B-mode is immediate and A-mode isn't, .B,

if neither mode is immediate, .F.

SLT, LDP, STP If A-mode is immediate, .AB,
if it isn't, (always!) .B.

JMP, JMZ, JMN, Always .B (but it's ignored for JMP and SPL).
DJN, SPL

Table 8.2: The Default Modi�ers when Omitted

8.7.2 B

Instruction execution proceeds with the A-value set to the B-number of the A-instruction
and the B-value set to the B-number of the B-instruction. A write to core replaces
the B-number of the instruction pointed to by the B-pointer.
For example, a CMP.B instruction would compare the B-number of the A-instruction
with the B-number of the B-instruction. A MOV.B instruction would replace the
B-number of the instruction pointed to by the B-pointer with the B-number of the
A-instruction.

8.7.3 AB

Instruction execution proceeds with the A-value set to the A-number of the A-
instruction and the B-value set to the B-number of the B-instruction. A write to
core replaces the B-number of the instruction pointed to by the B-pointer.
For example, a CMP.AB instruction would compare the A-number of the A-instruction
with the B-number of the B-instruction. A MOV.AB instruction would replace the
B-number of the instruction pointed to by the B-pointer with the A-number of the
A-instruction.

8.7.4 BA

Instruction execution proceeds with the A-value set to the B-number of the A-instruction
and the B-value set to the A-number of the B-instruction. A write to core replaces
the A-number of the instruction pointed to by the B-pointer.
For example, a CMP.BA instruction would compare the B-number of the A-instruction
with the A-number of the B-instruction. A MOV.BA instruction would replace the
A-number of the instruction pointed to by the B-pointer with the B-number of the

CAP. 8 The WiCE Language 95

� 8.7 Modi�ers

A-instruction.

8.7.5 F

Instruction execution proceeds with the A-value set to both the A-number and B-
number of the A-instruction (in that order) and the B-value set to both the A-number
and B-number of the B-instruction (also in that order). A write to core replaces both
the A-number and the B-number of the instruction pointed to by the B-pointer (in
that order).
For example, a CMP.F instruction would compare the A-number of the A-instruction
to the A-number of the B-instruction and the B-number of the A-instruction to B-
number of the B-instruction. A MOV.F instruction would replace the A-number of
the instruction pointed to by the B-pointer with the A-number of the A-instruction
and would also replace the B-number of the instruction pointed to by the B-pointer
with the B-number of the A-instruction.

8.7.6 X

Instruction execution proceeds with the A-value set to both the A-number and B-
number of the A-instruction (in that order) and the B-value set to both the B-number
and A-number of the B-instruction (in that order). A write to to core replaces both
the B-number and the A-number of the instruction pointed to by the B-pointer (in
that order).
For example, a CMP.X instruction would compare the A-number of the A-instruction
to the B-number of the B-instruction and the B-number of the A-instruction to A-
number of the B-instruction. A MOV.X instruction would replace the B-number of
the instruction pointed to by the B-pointer with the A-number of the A-instruction
and would also replace the A-number of the instruction pointed to by the B-pointer
with the B-number of the A-instruction.

8.7.7 I

Instruction execution proceeds with the A-value set to the A-instruction and the B-
value set to the B-instruction. A write to core replaces the entire instruction pointed
to by the B-pointer.
For example, a CMP.I instruction would compare the A-instruction to the B-instruction.
A MOV.I instruction would replace the instruction pointed to by the B-pointer with
the A-instruction.

CAP. 8 The WiCE Language 96

Chapter 9

The WiCE environment

9.1 Using WiCE

To compile the program just type make from the source directory.
To run the program just type the wice command with the proper command line
options. WiCE is a very �exible viral code simulator, and has di�erent options:

$./wice

WiCE v0.1 by Fernando Iazeolla

USAGE:

wice [options] file1 file2 file3 ...

valid options:

--file(-f) file alternative log file

--output(-o) output output mode (quiet,normal,debug,debug2,debug3)

--size(-m) size size of the array

--comm(-c) comm communication type(null,process,thread)

--vo(-v) mode modes are (none,txt,x11)

--log(-l) turn log on (off default)

--sleeptime(-z) pause between step commands (in seconds)

--gtkwaittime(-w) pause between step commands (in milliseconds)

--multiwin(-e) toggle multi or single window(s) (default is multi windows)

--cpu=cicles(-c) set the cpu cicles. -1 means infinite untill there is a winner.

By default WiCE writes the essential informations on the standard output. You can
redirect the output on a log �le with the -l option. You can also control the log �le
name via the -f option.
There are di�erent level of output details. You can control this via the -o option.
On the default mode WiCE doesn't o�ers any GUI. You can set the preferred GUI
by setting the appropriate value on the �vo option. The txt value generates an ascii

CAP. 9 The WiCE environment 97

� 9.2 WiCE Description

GUI (Figure 9.1). The x11 value generates a windowed output. By default the x11
GUI has separate windows (Figure 9.2), but one can set a unique window with the -e
option (Figure 9.3). The GUI level is completely transparent to other WiCE architec-
tural under-level. The -c option controls the communication level between agents.

Figure 9.1: The txt mode GUI of WiCE

The null option inhibits all communication type from and to any process or thread.
The process option allow only communication between di�erent processes while the
thread option allow only communication between threads of the same process.
The wait time between single commands can be controlled via the sleeptime or the
gtkwaittime options depending on which video output (vo) has been selected. This
because the windowed ambient has an event-orientation programming, so the execu-
tion routine has been implemented in a di�erent way from the classical sequential
programming method.
The �cpu option can be used to control the exit condition of WiCE depending on the
actual CPU cycle.
The �size option sets the memory array's dimension.

9.2 WiCE Description

The WiCE environment is able to run two or more self-modifying codes in a "sand-
box" that separates the viral codes from the real machine.
The language interpreted by WiCE is machine independent. This means that the
programmer can focus on optimizing code and self-modifying/repairing techniques
without worrying about the speci�c machine layer.

CAP. 9 The WiCE environment 98

� 9.2 WiCE Description

Figure 9.2: The multi window x11 GUI of WiCE

WiCE o�ers a secure environment to develop and test viral code and techniques
without smash any real computer.
The WiCE environments also o�ers inter/intra viral-process communication APIs.
This opens to a very interesting new scenario: the game theory.

CAP. 9 The WiCE environment 99

� 9.2 WiCE Description

Figure 9.3: The one window x11 GUI of WiCE

CAP. 9 The WiCE environment 100

Chapter 10

WiCE Internals

10.1 Software Architecture

WiCE is a �exible simulating environment. The language interpreted by WiCE is an
evolution of the ICWS'94 (the Redcode standard of 1994). This language is a high
level assembler that is independent from the underlying layer. So the programmer
doesn't have to worry about the machine's hardware architecture and can focus on
important matters such as self-replication and self-modifying algorithms.
The WiCE framework can be divied into four main logical layers (Figure 10.1): the
input&compiling layer, the initialization layer, the runtime layer, and the output
layer. Each of them is divided again in multiple sub-layers. Each layer has a speci�c
issue and can be changed or completely substituted without interfering with the other
layers.
In the next section we will describe all of the layers of the WiCE framework.

Figure 10.1: The WiCE Software Architecture

CAP. 10 WiCE Internals 101

� 10.2 the parser

10.2 the parser

The parser processes the input �les in two stages. During the �rst stage, the stream
is tokenized and the grammar is veri�ed syntactically. On the second stage semantic
veri�cation and address resolving is performed.
So in the �rst stage we �rst initialize the main process structure (Figure 10.2): and

struct Process{

int processID;

struct process_task *pt;

struct process_construct *pc;

struct Process *prev,*next;

};

Figure 10.2: The main Process structure

we are going to �ll the "process_construct" structure (Figure 10.3). This structure
is used while compiling the source viral program. In this structure the "org" �eld is

struct process_construct{

struct instruction_node *first,*last;

int len;

char org[MAXSTR];

struct var_table *vt_first,*vt_last;

};

Figure 10.3: The process_construct structure

the label of the entry point of the viral code. In this �rst stage of parsing process,
only the label name is detected, and then it will be resolved into a valid address into
the next parsing stage.
The struct "var_table" represent the variable table associated to this process. In this
table there is the variable names and the relative expressions is its expanded mode,
not already solved. Perhaps if we have a source line like:

x = 3 + 1 * 5 ;

in the variable table the name would be equal to "x", and the expression will point
to a structure that represent: "+(3, ∗(1, 5))".
The expression will be solved during the next stage. This because if in the right side
of the equation there would be an other variable, this might be solved also into a valid
number into the next stage.
The instruction node structure (Figure 10.4) is the core structure of the �rst stage

CAP. 10 WiCE Internals 102

� 10.2 the parser

struct instruction_node{

char instr [MAXSTR];

char modifier[6];

char laddr[4];

char raddr[4];

int num_node;

int line_count;

struct expr_node *left,*right;

void *code;

struct instruction_node *prev,*next;

};

Figure 10.4: The Instruction Node Structure

parsing process. For each instruction a new instruction node will be �lled. During
this parsing stage the token are veri�ed but are not converted into opcodes. So a
text �eld is passed to each of the instruction node �elds. the "laddr" and "raddr"
�elds represent the left and right addressing mode respectively. The "line_count"
�eld is �lled with source line number related to the instruction that is being process-
ing. This helps for debugging purpose, so the line number relatively to an eventually
error can be printed. The "num_code" is the relative address from the beginning of
the code. This is used during the second parsing stage to solve code addresses. The
"num_code" and the "line_count" can be di�erent because more than one instruc-
tion can be inserted in one line or comments line can be present in the source code
and they are not counted in instruction nodes.
The expression node (Figure 10.5), is a structure where variable expressions are stored
before being solved in the second stage. In the "str" �eld is stored the expression sym-

struct expr_node{

int type;

char str[MAXSTR];

struct expr_node *left,*right;

};

Figure 10.5: The Expression Node

bol. The type �eld identity the symbol and can assume the values listed in Figure
10.6. The precedence order is given by : OP_BOOL > OP_MUL > OP_ADD.
The "code" �eld in the instruction node structure (Fig.10.4) is for the moment un-
used. It will be used in the second parsing stage and it will be the complete opcode
of the instruction that will be fetched into the memory.
The �rst parser stage ends by adding into the process's variable space all the WiCE

CAP. 10 WiCE Internals 103

� 10.3 the compiler

#define OP_NULL 0

#define OP_MUL 1

#define OP_ADD 2

#define NUMBER 3

#define VAR 4

#define OP_BOOL 5

Figure 10.6: Types of expression items

environment constants such as CORESIZE, WARRIORS, MAXPROCESSES, MAX-
CYCLES, MAXLENGTH, MINDISTANCE, and VERSION.

10.3 the compiler

The compiler (or second parsing) stage starts by solving all the assertions and imme-
diately stops if one of them returns a false condition.
Then all instruction node �elds are converted into a coded binary format and the
"unpacked_op_mem" (Figure 10.7) is �lled. This structure is used even in decom-

struct unpacked_op_mem{

unsigned int processID;

int opcode;

int mod;

int a_pref;

int b_pref;

int a_val;

int b_val;

};

Figure 10.7: Unpacked Op Mem Structure

piling opcodes from memory to perform the relative action easily. Once the "un-
packed_op_mem" is compiled properly the "pack" function creates the entire op-
code and puts it into the "code" �eld of the instruction node structure. This �eld is
a "void" pointer. This because the WiCE frameworks has di�erent memory models,
and actually an opcode can be represented by a 32-bit, 64-bit- or a 128-bit words
(Figure 10.8). So the "code" �eld is initialized at run time. New memory alignment
can be inserted in the future.
During this second parsing stage, all variables value and memory address are solved.
Even the program's entry point.

CAP. 10 WiCE Internals 104

� 10.4 the initializer

32-bit: process_id (31-28) 4-bits

opcode (27-23) 5-bits

modifier (22-19) 4-bits

a_field_addr_mode (18-16) 3-bits

b_field_addr_mode (15-13) 3-bits

a_value (12-7) 6-bits

b_value (6-1) 6-bits

unused (0) 1-bit

64-bit: process_id (31-16) 16-bits

opcode (15-12) 4-bits

modifier (11-8) 4-bits

a_field_addr_mode (7-5) 3-bits

b_field_addr_mode (4-2) 3-bits

unused (1-0) 2-bits

a_value (31-16) 16-bits

b_value (15-0) 16-bits

128-bit: process_id (31-0) 32-bits

opcode (31-28) 4-bits

modifier (27-25) 3-bits

a_field_addr_mode (24-22) 3-bits

b_field_addr_mode (21-0) 22-bits padded

a_value (31-0) 32-bits

b_value (31-0) 32-bits

Figure 10.8: WiCE Memory Models

10.4 the initializer

The initializer starts by allocating the memory according to the memory model (Figure
10.8) and the memory size speci�ed in the command line.
Then, for all the processes, it puts the process's code, located in the code(s) �eld of
the process construct, into the memory at the right position.
Then the process task structure (Figure 10.9) and its only initial thread (Figure 10.10)
are initialized. The memory related to the "process_construct" is no more needed
and released.
Then, according to the video output selected at the command line options, the proper
video output initializer is called (none, txt, x11). The video output initializer sets the
memory arena output, the warrior list and the history space.

CAP. 10 WiCE Internals 105

� 10.5 the scheduler

struct process_task{

unsigned int ID;

unsigned int n_threads;

struct process_thread *cur_thread,*primo_thread,*ultimo_thread;

int communication_in_a,communication_in_b,communication_out_a,communication_out_b;

char out_symbol;

int out_color;

GdkColor m_color;

struct process_task *prev,*next;

};

Figure 10.9: The Process Task Structure

struct process_thread{

unsigned int IP;

struct process_task *ptask;

int communication_in_a,communication_in_b,communication_out_a,communication_out_b;

struct process_thread *prev,*next;

};

Figure 10.10: The Process Thread Structure

10.5 the scheduler

The scheduler routine takes the �rst waiting thread of the �rst process waiting on
the processes queue. Then it unpacks the current command and executes it. If the
process dies then it delete the process from the main process queue. The pointer to
the next process on the main list is updated, as also the next thread on the process
list if the process executed is still alive.
The loop ends if either there is only one process alive or the maximum CPU cycle is
reached. In the second case the match is considered a draw.
In the x11 video output mode there is another scheduler function. This because in
this case the function is called by a timeout event, because of the event-driven model
used under x11 mode. Anyway the structure of both scheduler functions are very
similar. They di�er only for the x11 widgets refresh system that is a consequence of
the x11 event-driven model instead of the modular textual programming mode that
uses a di�erent interaction mode.

CAP. 10 WiCE Internals 106

� 10.6 the output

10.6 the output

There are di�erent output layers as depicted in Figure 10.1. The "none" output
mode does not produce any output on the standard output stream. The main output
layer includes debug output streams that can be printed in the standard output as
default or in a log �le. If you decide to have a graphical output, there is a text semi-
graphical output (Figure 9.1) and a X11 GUI graphical (Figure 9.2) layer above the
main output.

CAP. 10 WiCE Internals 107

Appendix A

WiCE SourceCode

The WiCE source code has been released under GPLv2 licence (GNU Public Licence
version 2). The actual repository is located at http://code.google.com/p/wice/
.
The snapshot of the source code on which this thesis is based is listed below.

A.1 main.h

#define OUTPUT_QUIET 1

#define OUTPUT_NORMAL 2

#define OUTPUT_DEBUG 3

#define OUTPUT_DEBUG2 4

#define OUTPUT_DEBUG3 5

#define VO_NONE 1

#define VO_FRAMEBUFFER 2

#define VO_X11 3

#define ARENA_SIZE 8000

#define COMM_NULL 0

#define COMM_PROC 1

#define COMM_THREAD 2

#define MAX_CPU_CICLE 10000

#define STAT_WAIT_TIME 1000

#define MEM_TYPE_ONE 1

#define MEM_TYPE_TWO 2

#define MEM_TYPE_FOUR 4

#define MAXSTR 255

#define MAXMOD 6

CAP. A WiCE SourceCode 108

� A.1 main.h

#define MAX_PROG_SIZE 200

#define MAXPROCESSES 1000

#define MINDISTANCE 200

#define VERSION 01

#define PSPACESIZE 500

#define VERBOSE 1

#define DO_DEBUG 1

#define OP_NULL 0

#define OP_MUL 1

#define OP_ADD 2

#define NUMBER 3

#define VAR 4

#define OP_BOOL 5

#define ASSERT_STR "ASSERT"

#define ALIVE 1

#define DEAD 0

struct array_mem_small{

unsigned int mem;

};

struct array_mem_mid{

unsigned int processID_opcode;

unsigned int arg1_arg2;

};

struct array_mem_norm{

unsigned int processID;

unsigned int opcode;

unsigned int arg1;

unsigned int arg2;

};

struct expr_node{

int type;

char str[MAXSTR];

struct expr_node *left,*right;

};

struct instruction_node{

char instr [MAXSTR];

char modifier[6];

char laddr[4];

char raddr[4];

int num_node;

int line_count;

struct expr_node *left,*right;

CAP. A WiCE SourceCode 109

� A.1 main.h

void *code;

struct instruction_node *prev,*next;

};

struct process_task{

unsigned int ID;

unsigned int n_threads;

struct process_thread *cur_thread,*primo_thread,*ultimo_thread;

int communication_in_a,communication_in_b,communication_out_a,communication_out_b;

char out_symbol;

int out_color;

GdkColor m_color;

struct process_task *prev,*next;

};

struct process_thread{

unsigned int IP;

struct process_task *ptask;

int communication_in_a,communication_in_b,communication_out_a,communication_out_b;

struct process_thread *prev,*next;

};

struct var_table{

char name[MAXSTR];

struct expr_node *val_first,*val_last;

struct var_table *prev,*next;

};

struct process_construct{

struct instruction_node *first,*last;

int len;

char org[MAXSTR];

struct var_table *vt_first,*vt_last;

};

struct Process{

int processID;

struct process_task *pt;

struct process_construct *pc;

struct Process *prev,*next;

};

struct unpacked_op_mem{

unsigned int processID;

int opcode;

int mod;

int a_pref;

int b_pref;

int a_val;

int b_val;

};

CAP. A WiCE SourceCode 110

� A.2 main.c

void *arena;

int size_arena,warriors,version,min_distance,maxprocesses,max_prog_size;

int arena_mem_type;

int output_mode,vo_mode,log_mode,b_log,max_x,max_y,sc_x,sc_y;

int xd,yd,xl,yl,max_sc_y,sleeptime,b_multi_win,gtkwaittime,current_make_node,

txt_y_warrior_list,g_actual_CPU;

int gtk_sc_x,gtk_sc_y;

int communication;

int CPU_cicle;

struct process_task *primo_task,*ultimo_task,*first_killed_task,*last_killed_task;

struct Process *proc_primo,*proc_ultimo;

char logfile[MAXSTR],out_str[MAXSTR];

FILE *fpout;

A.2 main.c

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include<getopt.h>

#include<string.h>

#include<errno.h>

#include<gtk/gtk.h>

#include"main.h"

void usage()

{

printf("WiCE v0.1 by xnando\n");

printf("\nUSAGE:\n");

printf("wice [options] file1 file2 file3 ...\n");

printf("\nvalid options:\n\n");

printf("\t--file(-f) file\t\talternative log file\n");

printf("\t--output(-o) output\toutput mode

(quiet,normal,debug,debug2,debug3)\n");

printf("\t--size(-m) size\t\tsize of the array\n");

printf("\t--comm(-c) comm\t\tcommunication type(null,process,thread)\n");

printf("\t--vo(-v) mode\t\tmodes are (none,txt,x11)\n");

printf("\t--log(-l)\t\turn log on (off default)\n");

printf("\t--sleeptime(-z)\t\tpause between step commands (in seconds)\n");

printf("\t--gtkwaittime(-w)\tpause between step commands (in

milliseconds)\n");

printf("\t--multiwin(-e)\t\ttoggle multi or single window(s) (default is

multi windows)\n");

printf("\t--cpu=cicles(-c)\tset the cpu cicles. -1 means infinite untill

CAP. A WiCE SourceCode 111

� A.2 main.c

there is a winner.\n");

exit(1);

}

void get_defaults_arg()

{

size_arena=ARENA_SIZE;

CPU_cicle=MAX_CPU_CICLE;

arena_mem_type=MEM_TYPE_FOUR;

output_mode=OUTPUT_NORMAL;

communication=COMM_NULL;

warriors=0;

version=VERSION;

min_distance=MINDISTANCE;

maxprocesses=MAXPROCESSES;

max_prog_size=MAX_PROG_SIZE;

strcpy(logfile,"wice.log");

log_mode=0;

vo_mode=VO_NONE;

fpout=stdout;

b_log=0;

sleeptime=0;

b_multi_win=1;

gtkwaittime=5;

gtk_sc_x=200;

gtk_sc_y=200;

}

void parse_args(int argc,char **argv)

{

int c;

while (1)

{

static struct option long_options[] =

{

{"output",required_argument,0,'o'},

{"memtype",required_argument,0,'m'},

{"cpu",required_argument,0,'c'},

{"comm",required_argument,0,'z'},

{"file",required_argument,0,'f'},

{"size",required_argument,0,'s'},

{"vo",required_argument,0,'v'},

{"sleeptime",required_argument,0,'z'},

{"gtkwaittime",required_argument,0,'w'}

};

int option_index = 0;

c = getopt_long (argc, argv, "hlev:o:m:c:z:f:k:w:",long_options,

CAP. A WiCE SourceCode 112

� A.2 main.c

&option_index);

if (c == -1) break;

switch(c)

{

case 'o':

if((strcmp(optarg,"quiet"))==0) output_mode=OUTPUT_QUIET;

if((strcmp(optarg,"normal"))==0) output_mode=OUTPUT_NORMAL;

if((strcmp(optarg,"debug"))==0) output_mode=OUTPUT_DEBUG;

if((strcmp(optarg,"debug2"))==0) output_mode=OUTPUT_DEBUG2;

if((strcmp(optarg,"debug3"))==0) output_mode=OUTPUT_DEBUG3;

break;

case 'm':

if((strcmp(optarg,"tiny"))==0) arena_mem_type=MEM_TYPE_ONE;

if((strcmp(optarg,"medium"))==0) arena_mem_type=MEM_TYPE_TWO;

if((strcmp(optarg,"large"))==0) arena_mem_type=MEM_TYPE_FOUR;

break;

case 'c':

CPU_cicle=strtol(optarg,NULL,10);

if(errno==EINVAL) usage();

break;

case 'k':

if((strcmp(optarg,"null"))==0) communication=COMM_NULL;

if((strcmp(optarg,"process"))==0) communication=COMM_PROC;

if((strcmp(optarg,"thread"))==0) communication=COMM_THREAD;

break;

case 'f':

strncpy(logfile,optarg,MAXSTR);

break;

case 's':

size_arena=strtol(optarg,NULL,10);

if(errno==EINVAL) usage();

break;

case 'z':

sleeptime=strtol(optarg,NULL,10);

if(errno==EINVAL) usage();

break;

case 'w':

gtkwaittime=strtol(optarg,NULL,10);

if(errno==EINVAL) usage();

break;

case 'v':

if((strcmp(optarg,"none"))==0) vo_mode=VO_NONE;

if((strcmp(optarg,"txt"))==0) vo_mode=VO_FRAMEBUFFER;

if((strcmp(optarg,"x11"))==0) vo_mode=VO_X11;

break;

CAP. A WiCE SourceCode 113

� A.2 main.c

case 'l':

b_log=1;log_mode=1;

break;

case 'e':

b_multi_win=0;

break;

case 'h':

case '?':

usage();

break;

default:

usage();

break;

}

}

}

void look_data_ok()

{

if(arena_mem_type==MEM_TYPE_ONE)

{

if(size_arena>64) die("in tiny model the size of the arena must be<64 or

try a bigger model");

if(max_prog_size>64) die("in tiny model the size of the warrior must

be<64 or try a bigger model");

if(maxprocesses>16) die("in tiny model maximum nember of processes must

be<16 or try a bigger model");

}

if(arena_mem_type==MEM_TYPE_TWO)

{

if(size_arena>65535) die("in tiny model the size of the arena must

be<65535 or try a bigger model");

if(max_prog_size>65535) die("in tiny model the size of the warrior must

be<65535 or try a bigger model");

if(maxprocesses>65535) die("in tiny model maximum nember of processes

must be<65535 or try a bigger model");

}

if(arena_mem_type==MEM_TYPE_FOUR)

{

}

}

int main(int argc,char **argv)

{

CAP. A WiCE SourceCode 114

� A.2 main.c

proc_primo=NULL;

proc_ultimo=NULL;

primo_task=NULL;

ultimo_task=NULL;

get_defaults_arg();

parse_args(argc,argv);

if(b_log)

{

fpout=fopen(logfile,"w");

if(fpout==NULL)

{

printf("error opening log file\n");

exit(1);

}

}

look_data_ok();

if(output_mode>=OUTPUT_DEBUG)

{

sprintf(out_str,"outputmode=%d\n",output_mode);

fputs(out_str,fpout);

sprintf(out_str,"memsize=%d\n",size_arena);

fputs(out_str,fpout);

sprintf(out_str,"b_log=%d\n",b_log);

fputs(out_str,fpout);

sprintf(out_str,"vo=%d\n",vo_mode);

fputs(out_str,fpout);

sprintf(out_str,"sleeptime=%d\n",sleeptime);

fputs(out_str,fpout);

}

//read_files (and parse it in 2 passes

warriors=argc-optind;

if(optind<argc)

{

while(optind<argc)

{

if(output_mode>=OUTPUT_NORMAL)

{

sprintf(out_str,"parsing %s ... ",argv[optind]);

fputs(out_str,fpout);

}

parse(argv[optind++]);

if(output_mode>=OUTPUT_NORMAL)

{

sprintf(out_str,"ok\n");

fputs(out_str,fpout);

CAP. A WiCE SourceCode 115

� A.3 init_game.h

}

}

}

else

{

usage();

}

//init_game

init_game();

//play_game

play_game();

//result

deinit_game();

if(b_log) fclose(fpout);

return 0;

}

A.3 init_game.h

void init_game(void);

void deinit_game(void);

A.4 init_game.c

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<string.h>

#include<strings.h>

#include<errno.h>

#include<ctype.h>

#include<math.h>

#include<gtk/gtk.h>

#include"main.h"

#include"list_utils.h"

#include"parse2.h"

#include"pack.h"

#include"init_game.h"

#include"txt_output.h"

#include"x11_output.h"

extern GdkColormap *execute_colormap;

CAP. A WiCE SourceCode 116

� A.4 init_game.c

void putcode(int pos,int processID,void *code)

{

struct array_mem_small *msmall,*small_arena;

struct array_mem_mid *mmid,*mid_arena;

struct array_mem_norm *mlarge,*large_arena;

if(arena_mem_type==MEM_TYPE_ONE)

{

msmall=(struct array_mem_small*)code;

small_arena=(struct array_mem_small*)arena;

small_arena[pos].mem=msmall->mem;

}

if(arena_mem_type==MEM_TYPE_TWO)

{

mmid=(struct array_mem_mid*)code;

mid_arena=(struct array_mem_mid*)arena;

mid_arena[pos].processID_opcode=mmid->processID_opcode;

mid_arena[pos].arg1_arg2=mmid->arg1_arg2;

}

if(arena_mem_type==MEM_TYPE_FOUR)

{

mlarge=(struct array_mem_norm*)code;

large_arena=(struct array_mem_norm*)arena;

large_arena[pos].processID=mlarge->processID;

large_arena[pos].opcode=mlarge->opcode;

large_arena[pos].arg1=mlarge->arg1;

large_arena[pos].arg2=mlarge->arg2;

}

}

void get_symbols(char *out_symbol,int *out_color)

{

static color=1;

static letter='A';

*out_symbol=letter++;

*out_color=color++;

}

void free_expr(struct expr_node *expr)

{

if(expr->left) free_expr(expr->left);

if(expr->right) free_expr(expr->right);

free(expr);

}

void init_game()

{

struct array_mem_small *msmall;

CAP. A WiCE SourceCode 117

� A.4 init_game.c

struct array_mem_mid *mmid;

struct array_mem_norm *mlarge;

struct Process *proc;

struct instruction_node *in;

struct process_thread *pthread;

struct process_task *ptask;

int next_offs,proc_offs,pos;

double xx,lato_x,lato_y;

if(arena_mem_type==MEM_TYPE_ONE)

{

msmall=(struct array_mem_small*)malloc(sizeof(struct array_mem_small)*size_arena);

if(msmall==NULL) die("error malloking small array mem");

bzero(msmall,sizeof(struct array_mem_small)*size_arena);

arena=msmall;

}

if(arena_mem_type==MEM_TYPE_TWO)

{

mmid=(struct array_mem_mid*)malloc(sizeof(struct array_mem_mid)*size_arena);

if(mmid==NULL) die("error malloking mid array mem");

bzero(mmid,sizeof(struct array_mem_mid)*size_arena);

arena=mmid;

}

if(arena_mem_type==MEM_TYPE_FOUR)

{

mlarge=(struct array_mem_norm*)malloc(sizeof(struct array_mem_norm)*size_arena);

if(mlarge==NULL) die("error malloking large array mem");

bzero(mlarge,sizeof(struct array_mem_norm)*size_arena);

arena=mlarge;

}

next_offs=0;

for(proc=proc_primo;proc;proc=proc->next)

{

//calc offset in mem

proc_offs=(next_offs+(rand()%min_distance))%size_arena;

//put in mem

pos=proc_offs;

for(in=proc->pc->first;in;in=in->next)

{

putcode(pos++,proc->processID,in->code);

}

//create pt

pthread=(struct process_thread*)malloc(sizeof(struct process_thread));

if(pthread==NULL) die("error alloking new thread");

pthread->IP=proc_offs+(atoi(proc->pc->org));

pthread->communication_in_a=0;

CAP. A WiCE SourceCode 118

� A.4 init_game.c

pthread->communication_out_a=0;

pthread->communication_in_b=0;

pthread->communication_out_b=0;

pthread->prev=NULL;

pthread->next=NULL;

pthread->ptask=NULL;

ptask=(struct process_task*)malloc(sizeof(struct process_task));

if(ptask==NULL) die("error alloking new task");

ptask->ID=proc->processID;

ptask->n_threads=1;

ptask->prev=NULL;

ptask->next=NULL;

ptask->primo_thread=NULL;

ptask->ultimo_thread=NULL;

ptask->cur_thread=pthread;

ptask->communication_in_a=0;

ptask->communication_out_a=0;

ptask->communication_in_b=0;

ptask->communication_out_b=0;

get_symbols(&ptask->out_symbol,&ptask->out_color);

//add pt

add_thread(pthread,ptask);

add_task(ptask);

//recalc next_offs

next_offs+=proc_offs+proc->pc->len;

//free proc&pc

in=proc->pc->first;

do{

if(in->left) free_expr(in->left);

if(in->right) free_expr(in->right);

if(in->code) free(in->code);

if(in->next) {in=in->next;free(in->prev);}

else {free(in);in=NULL;}

}while(in!=NULL);

}

xx=sqrt(size_arena);

lato_y=rint(xx);

lato_x=ceil(xx);

max_x=(int)lato_x;

max_y=(int)lato_y;

if(output_mode>=OUTPUT_DEBUG)

{

sprintf(out_str,"max_x=%d max_y=%d\n",max_x,max_y);

fputs(out_str,fpout);

}

CAP. A WiCE SourceCode 119

� A.5 x11_output.h

//init_graph

if(vo_mode==VO_FRAMEBUFFER) init_txt();

if(vo_mode==VO_X11) init_x11();

}

void deinit_game()

{

if(vo_mode==VO_FRAMEBUFFER) deinit_txt();

if(vo_mode==VO_X11) deinit_x11();

if(g_actual_CPU>=CPU_cicle)

{

sprintf(out_str,"The match is a Draw !!\n");

}

else

{

sprintf(out_str,"...and the winner is process #%d ,at %d CPU

cicles \n",primo_task->ID,g_actual_CPU);

if(output_mode>=OUTPUT_DEBUG2) sprintf(out_str,"...and the winner is

process #%d (%c) , at %d CPU cicles

\n",primo_task->ID,primo_task->out_symbol,g_actual_CPU);

}

fputs(out_str,fpout);

}

A.5 x11_output.h

void x11_cell_refresh(int addr,struct process_thread *pt);

void init_x11(void);

void deinit_x11(void);

void x11_print_arena_snap(void);

void gtk_display_curr_instr(char *ss);

void gtk_update_warrior(struct process_task *ptask);

A.6 x11_output.c

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<string.h>

#include<errno.h>

#include<ctype.h>

#include<gtk/gtk.h>

#include"main.h"

#include"list_utils.h"

CAP. A WiCE SourceCode 120

� A.6 x11_output.c

//#include"parse2.h"

#include"pack.h"

//#include"init_game.h"

#include"scheduler.h"

#include"execute.h"

#include"debug_output.h"

#include"txt_output.h"

#include"x11_output.h"

GtkWidget *window1,*window2,*window3;

GtkWidget *vbox;

GtkWidget *drawing_area;

GdkDrawable *main_map;

GtkWidget *hbox;

GtkWidget *liststore_instr;

GtkWidget *liststore_warrior;

GtkWidget *scrolledwindow1,*scrolledwindow2,*scrolledwindow3;

GtkWidget *statusbar;

GtkWidget *warriorview,*instrview;

GtkTreeIter iter;

gint context_id,timeout_tag,gtkhistory,gtkwarrior;

GtkListStore *model,*model2; /* l'oggetto model */

GtkWidget *view,*view2; /* -\ */

GtkCellRenderer *renderer; /* --> l'oggetto view */

GtkTreeSelection *selection,*selection2; /* -/ */

struct process_task *gtktask;

static GdkPixmap *pixmap = NULL;

GdkGC* execute_gc;

GdkColor black;

GdkColormap *execute_colormap;

GdkPixbuf *pixbuf;

GdkPixmap *bullet;

struct process_task* get_cell_owner(int addr)

{

struct unpacked_op_mem mem;

struct process_task *mtask;

unpack(addr,&mem);

if(mem.processID==0) return NULL;

mtask=primo_task;

do{

if(mem.processID==mtask->ID) return mtask;

mtask=mtask->next;

}while(mtask);

CAP. A WiCE SourceCode 121

� A.6 x11_output.c

//mtask=first_killed_task;

//do{

// if(mem.processID==mtask->ID) return mtask;

// mtask=mtask->next;

//}while(mtask);

return NULL;

}

static void color_icon (GdkPixbuf *pixbuf, int x, int y, guchar red, guchar

green, guchar blue, guchar alpha)

{

int width, height, rowstride, n_channels,i,j;

guchar *pixels, *p;

n_channels = gdk_pixbuf_get_n_channels (pixbuf);

g_assert (gdk_pixbuf_get_colorspace (pixbuf) == GDK_COLORSPACE_RGB);

g_assert (gdk_pixbuf_get_bits_per_sample (pixbuf) == 8);

g_assert (gdk_pixbuf_get_has_alpha (pixbuf));

g_assert (n_channels == 4);

width = gdk_pixbuf_get_width (pixbuf);

height = gdk_pixbuf_get_height (pixbuf);

g_assert (x >= 0 && x < width);

g_assert (y >= 0 && y < height);

rowstride = gdk_pixbuf_get_rowstride (pixbuf);

pixels = gdk_pixbuf_get_pixels (pixbuf);

for(i=0;i<10;i++)

for(j=0;j<10;j++)

{

p = pixels + j * rowstride + i * n_channels;

p[0] = red;

p[1] = green;

p[2] = blue;

p[3] = alpha;

}

p = pixels + y * rowstride + x * n_channels;

p[0] = red;

p[1] = green;

p[2] = blue;

p[3] = alpha;

gdk_pixbuf_fill(pixbuf,(guint32)p);

CAP. A WiCE SourceCode 122

� A.6 x11_output.c

}

static guint32 get_RGBA(guchar red, guchar green, guchar blue)

{

guchar *p,*pixels;

int x=0,y=0,n_channels,rowstride;

n_channels = gdk_pixbuf_get_n_channels (pixbuf);

rowstride = gdk_pixbuf_get_rowstride (pixbuf);

pixels = gdk_pixbuf_get_pixels (pixbuf);

p = pixels + y * rowstride + x * n_channels;

p[0] = red;

p[1] = green;

p[2] = blue;

p[3] = 1;

return *p;

}

static void on_destroy (GtkWidget * widget, gpointer data)

{

gtk_main_quit ();

sprintf(out_str,"User Termination.\n");

fputs(out_str,fpout);

exit(1);

}

static void on_history_destroy (GtkWidget * widget, gpointer data)

{

gtkhistory=0;

}

static void on_warrior_destroy (GtkWidget * widget, gpointer data)

{

gtkwarrior=0;

}

void gtk_display_curr_instr(char *ss)

{

if(gtkhistory)

{

gtk_list_store_append(GTK_LIST_STORE(model), &iter);

gtk_list_store_set(GTK_LIST_STORE(model), &iter,0, ss,-1);

//and scoll down !!!!

//gtk_signal_emit_by_name(GTK_OBJECT(scrolledwindow2),"scroll_event",

NULL);

}

}

gint gtk_statistic(gpointer data)

{

return TRUE;

CAP. A WiCE SourceCode 123

� A.6 x11_output.c

}

void gtk_update_warrior(struct process_task *ptask)

{

int x,n;

char s1[MAXSTR];

n=ptask->ID - 1;

x=gtk_tree_model_iter_nth_child(GTK_TREE_MODEL(model2),&iter,NULL,n);

if(x)

{

//gtk_list_store_set(GTK_LIST_STORE(model2), &iter,0,

pixbuf,1,"ciao",2,out_str,-1);

//gtk_list_store_set(GTK_LIST_STORE(model2), &iter,0,

NULL,1,"pippo",2,"asas",-1);

pixbuf=gdk_pixbuf_new(GDK_COLORSPACE_RGB,TRUE,8,10,10);

sprintf(out_str,"#%d (%c)

color(%d,%d,%d)",ptask->ID,ptask->out_symbol,ptask->m_color.red,ptask->

m_color.green,ptask->m_color.blue);

bullet = gdk_pixmap_new (drawing_area->window, 10,10, -1);

gdk_gc_set_foreground (execute_gc, &(ptask->m_color));

gdk_draw_rectangle (bullet, execute_gc, TRUE, 0, 0,10,10);

gdk_pixbuf_get_from_drawable(pixbuf,bullet,NULL,0,0,0,0,10,10);

if(ptask->n_threads)

{

sprintf(s1,"%d",ptask->n_threads);

}

else

{

sprintf(s1,"Dead!");

}

gtk_list_store_set(GTK_LIST_STORE(model2), &iter,0,

pixbuf,1,s1,2,out_str,-1);

g_object_unref(bullet);

g_object_unref(pixbuf);

}

}

static gint main_expose (GtkWidget *widget, GdkEventExpose *event)

{

int x1,y1,x2,y2;

int i;

struct process_task *mtask;

gdk_gc_set_foreground (execute_gc, &black);

gdk_draw_rectangle (widget->window, widget->style->black_gc, TRUE,

event->area.x, event->area.y,event->area.width,event->area.height);

for(i=0;i<size_arena;i++)

{

CAP. A WiCE SourceCode 124

� A.6 x11_output.c

mtask=get_cell_owner(i);

if(mtask)x11_cell_refresh(i,mtask->cur_thread);

else x11_cell_refresh(i,NULL);

}

//gdk_draw_rectangle(widget->window,execute_gc,TRUE,10,10,5,5);

return TRUE; /* Why do we need this??? */

}

static gint main_configure (GtkWidget *widget, GdkEventConfigure *event)

{

main_map = widget->window;

execute_gc = gdk_gc_new (drawing_area->window);

execute_colormap = gdk_window_get_colormap (drawing_area->window);

black.red = 15000;

black.green = 15000;

black.blue = 15000;

gdk_color_alloc (execute_colormap, &black);

gdk_gc_set_background (execute_gc, &black);

return FALSE;

}

void x11_cell_refresh(int addr,struct process_thread *pt)

{

int x,y;

x=(addr%gtk_sc_x)*6;

y=(int)(((double)addr/(double)gtk_sc_x))*6;

if(pt==NULL)

{

gdk_gc_set_foreground(execute_gc,&black);

}

else

{

gdk_gc_set_foreground(execute_gc,&(pt->ptask->m_color));

}

gdk_draw_rectangle(main_map,execute_gc,TRUE,x,y,5,5);

}

gint gtk_execute(gpointer data)

{

struct process_task *task_to_kill;

int alive;

static int actual_CPU=0,infinite_CPU=0;

if(CPU_cicle==-1) {CPU_cicle=1;infinite_CPU=1;}

if(actual_CPU++>=CPU_cicle)

{

if(gtkhistory)

{

CAP. A WiCE SourceCode 125

� A.6 x11_output.c

//gtk_display_draw

gtk_list_store_append(GTK_LIST_STORE(model), &iter);

sprintf(out_str,"This is a draw !!!");

gtk_list_store_set(GTK_LIST_STORE(model), &iter,0, out_str,-1);

}

context_id = gtk_statusbar_get_context_id(GTK_STATUSBAR

(statusbar),"my_statusbar");

gtk_statusbar_push (GTK_STATUSBAR (statusbar), context_id, "(Not

Running), this is a draw!");

return FALSE;

}

if(primo_task==ultimo_task)

{

if(gtkhistory)

{

//gtk_display_winner

gtk_list_store_append(GTK_LIST_STORE(model), &iter);

sprintf(out_str," ...and the winner is #%d (%c) after %d CPU

cicles",primo_task->ID,primo_task->out_symbol,actual_CPU);

gtk_list_store_set(GTK_LIST_STORE(model), &iter,0, out_str,-1);

}

context_id = gtk_statusbar_get_context_id(GTK_STATUSBAR

(statusbar),"my_statusbar");

sprintf(out_str,"(Not Running), ...and the winner is #%d (%c) after %d

CPU cicles",primo_task->ID,primo_task->out_symbol,actual_CPU);

gtk_statusbar_push (GTK_STATUSBAR (statusbar), context_id,out_str);

return FALSE;

}

alive=step(gtktask->cur_thread);

if(infinite_CPU) actual_CPU--;

if(alive)

{

gtktask->cur_thread=gtktask->cur_thread->next;

if(gtktask->cur_thread==NULL) gtktask->cur_thread=gtktask->primo_thread;

}

else

{

del_thread(gtktask->cur_thread);

if(gtkhistory)

{

//gtk_display thread dead

gtk_list_store_append(GTK_LIST_STORE(model), &iter);

sprintf(out_str,"a thread of task #%d is dead",gtktask->ID);

gtk_list_store_set(GTK_LIST_STORE(model), &iter,0, out_str,-1);

}

CAP. A WiCE SourceCode 126

� A.6 x11_output.c

}

task_to_kill=gtktask;

gtktask=gtktask->next; if(gtktask==NULL) gtktask=primo_task;

if(task_to_kill->cur_thread==NULL)

{

if(gtkhistory)

{

gtk_list_store_append(GTK_LIST_STORE(model), &iter);

sprintf(out_str,"the task #%d is dead",task_to_kill->ID);

gtk_list_store_set(GTK_LIST_STORE(model), &iter,0, out_str,-1);

}

if(gtkwarrior)

{

}

gtk_update_warrior(task_to_kill);

del_task(task_to_kill);

}

return TRUE;

}

void multi_win_init()

{

window1 = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_container_set_border_width (GTK_CONTAINER (window1), 1);

gtk_window_set_title (GTK_WINDOW (window1), "WiCE");

//gtk_window_set_policy(GTK_WINDOW(window1),FALSE,FALSE,FALSE);

gtk_window_set_default_size (GTK_WINDOW (window1), max_x*6, max_y*6);

//gtk_window_set_default_icon_from_file (PIXMAPS_DIR

"/hello-icon.gif",NULL);

g_signal_connect (G_OBJECT (window1), "destroy",G_CALLBACK (on_destroy),

NULL);

vbox=gtk_vbox_new(FALSE,0);

gtk_container_add(GTK_CONTAINER(window1),vbox);

gtk_widget_show(vbox);

//add draw area

drawing_area = gtk_drawing_area_new ();

gtk_widget_set_size_request (drawing_area, max_x*6, max_y*6);

gtk_signal_connect (GTK_OBJECT (drawing_area),

"expose_event",(GtkSignalFunc) main_expose, NULL);

gtk_signal_connect

(GTK_OBJECT(drawing_area),"configure_event",(GtkSignalFunc)

main_configure, NULL);

gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK);

gtk_box_pack_start(GTK_BOX(vbox),drawing_area,TRUE,TRUE,0);

gtk_widget_show(drawing_area);

CAP. A WiCE SourceCode 127

� A.6 x11_output.c

statusbar=gtk_statusbar_new();

gtk_box_pack_start(GTK_BOX(vbox),statusbar,FALSE,FALSE,0);

gtk_widget_show(statusbar);

context_id = gtk_statusbar_get_context_id(GTK_STATUSBAR

(statusbar),"my_statusbar");

gtk_statusbar_push (GTK_STATUSBAR (statusbar), context_id, "Not Running.");

gtk_widget_show(window1);

window2 = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_container_set_border_width (GTK_CONTAINER (window2), 1);

gtk_window_set_title (GTK_WINDOW (window2), "History");

gtk_window_set_default_size (GTK_WINDOW (window2), 600, 200);

g_signal_connect (G_OBJECT (window2), "destroy",G_CALLBACK

(on_history_destroy), NULL);

scrolledwindow2 = gtk_scrolled_window_new (NULL, NULL);

gtk_container_add(GTK_CONTAINER(window2),scrolledwindow2);

gtk_container_set_border_width (GTK_CONTAINER (scrolledwindow2), 10);

gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW

(scrolledwindow2),GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);

gtk_widget_show (scrolledwindow2);

model = gtk_list_store_new(1, G_TYPE_STRING);

view = gtk_tree_view_new_with_model (GTK_TREE_MODEL(model));

selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(view));

renderer = gtk_cell_renderer_text_new();

gtk_tree_view_insert_column_with_attributes(GTK_TREE_VIEW(view),-1,"History"

,renderer,"text",0,NULL);

gtk_widget_show (view);

g_object_unref(model);

gtk_container_add(GTK_CONTAINER(scrolledwindow2),view);

gtk_window_move(GTK_WINDOW(window2),70,650);

gtk_widget_show(window2);

window3 = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_container_set_border_width (GTK_CONTAINER (window3), 1);

gtk_window_set_title (GTK_WINDOW (window3), "Warriors");

gtk_window_set_default_size (GTK_WINDOW (window3), 200, 400);

g_signal_connect (G_OBJECT (window3), "destroy",G_CALLBACK

(on_warrior_destroy), NULL);

scrolledwindow3 = gtk_scrolled_window_new (NULL, NULL);

gtk_container_add(GTK_CONTAINER(window3),scrolledwindow3);

gtk_container_set_border_width (GTK_CONTAINER (scrolledwindow3), 10);

gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW

(scrolledwindow3),GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);

gtk_widget_show (scrolledwindow3);

CAP. A WiCE SourceCode 128

� A.6 x11_output.c

model2 = gtk_list_store_new(3,

GDK_TYPE_PIXBUF,G_TYPE_STRING,G_TYPE_STRING);

view2 = gtk_tree_view_new_with_model (GTK_TREE_MODEL(model2));

selection2 = gtk_tree_view_get_selection(GTK_TREE_VIEW(view2));

renderer = gtk_cell_renderer_pixbuf_new();

gtk_tree_view_insert_column_with_attributes(GTK_TREE_VIEW(view2),-1,"<>",

renderer,"pixbuf",0,NULL);

renderer = gtk_cell_renderer_text_new();

gtk_tree_view_insert_column_with_attributes(GTK_TREE_VIEW(view2),-1,"Threads

",renderer,"text",1,NULL);

renderer = gtk_cell_renderer_text_new();

gtk_tree_view_insert_column_with_attributes(GTK_TREE_VIEW(view2),-1,"

Warriors",renderer,"text",2,NULL);

gtk_widget_show (view2);

g_object_unref(model2);

gtk_container_add(GTK_CONTAINER(scrolledwindow3),view2);

gtk_window_move(GTK_WINDOW(window3),660,150);

gtk_widget_show(window3);

}

void one_win_init()

{

window1 = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_container_set_border_width (GTK_CONTAINER (window1), 1);

gtk_window_set_title (GTK_WINDOW (window1), "WiCE");

gtk_window_set_default_size (GTK_WINDOW (window1), max_x*6, max_y*6);

//gtk_window_set_default_icon_from_file (PIXMAPS_DIR

"/hello-icon.gif",NULL);

g_signal_connect (G_OBJECT (window1), "destroy",G_CALLBACK (on_destroy),

NULL);

vbox=gtk_vbox_new(FALSE,0);

gtk_container_add(GTK_CONTAINER(window1),vbox);

gtk_widget_show(vbox);

hbox=gtk_hbox_new(FALSE,0);

gtk_box_pack_start(GTK_BOX(vbox),hbox,TRUE,TRUE,0);

gtk_widget_show(hbox);

scrolledwindow1 = gtk_scrolled_window_new (NULL, NULL);

gtk_box_pack_start(GTK_BOX(hbox),scrolledwindow1,TRUE,TRUE,0);

gtk_container_set_border_width (GTK_CONTAINER (scrolledwindow1), 10);

gtk_widget_set_size_request(scrolledwindow1, max_x*7, max_y*7);

gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW

(scrolledwindow1),GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);

gtk_widget_show (scrolledwindow1);

//area disegno

drawing_area = gtk_drawing_area_new ();

gtk_widget_set_size_request (drawing_area, max_x*6, max_y*6);

CAP. A WiCE SourceCode 129

� A.6 x11_output.c

gtk_signal_connect (GTK_OBJECT (drawing_area),

"expose_event",(GtkSignalFunc) main_expose, NULL);

gtk_signal_connect

(GTK_OBJECT(drawing_area),"configure_event",(GtkSignalFunc)

main_configure, NULL);

gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK);

gtk_scrolled_window_add_with_viewport(GTK_SCROLLED_WINDOW(

scrolledwindow1),drawing_area);

gtk_widget_show(drawing_area);

scrolledwindow3 = gtk_scrolled_window_new (NULL, NULL);

gtk_box_pack_start(GTK_BOX(hbox),scrolledwindow3,FALSE,FALSE,0);

gtk_container_set_border_width (GTK_CONTAINER (scrolledwindow3), 10);

gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW

(scrolledwindow3),GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);

gtk_widget_show (scrolledwindow3);

model2 = gtk_list_store_new(3,

GDK_TYPE_PIXBUF,G_TYPE_STRING,G_TYPE_STRING);

view2 = gtk_tree_view_new_with_model (GTK_TREE_MODEL(model2));

selection2 = gtk_tree_view_get_selection(GTK_TREE_VIEW(view2));

renderer = gtk_cell_renderer_pixbuf_new();

gtk_tree_view_insert_column_with_attributes(GTK_TREE_VIEW(view2),-1,"<>",

renderer,"pixbuf",0,NULL);

renderer = gtk_cell_renderer_text_new();

gtk_tree_view_insert_column_with_attributes(GTK_TREE_VIEW(view2),-1,"Threads

",renderer,"text",1,NULL);

renderer = gtk_cell_renderer_text_new();

gtk_tree_view_insert_column_with_attributes(GTK_TREE_VIEW(view2),-1,"

Warriors",renderer,"text",1,NULL);

gtk_widget_show (view2);

g_object_unref(model2);

gtk_widget_set_size_request(view2, 150, 200);

gtk_container_add(GTK_CONTAINER(scrolledwindow3),view2);

//gtk_window_move(GTK_WINDOW(window3),960,300);

gtk_widget_show(window3);

scrolledwindow2 = gtk_scrolled_window_new (NULL, NULL);

gtk_box_pack_start(GTK_BOX(vbox),scrolledwindow2,FALSE,FALSE,0);

gtk_container_set_border_width (GTK_CONTAINER (scrolledwindow2), 10);

gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW

(scrolledwindow2),GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);

gtk_widget_show (scrolledwindow2);

model = gtk_list_store_new(1, G_TYPE_STRING);

view = gtk_tree_view_new_with_model (GTK_TREE_MODEL(model));

selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(view));

renderer = gtk_cell_renderer_text_new();

gtk_tree_view_insert_column_with_attributes(GTK_TREE_VIEW(view),-1,"History"

CAP. A WiCE SourceCode 130

� A.6 x11_output.c

,renderer,"text",0,NULL);

gtk_widget_show (view);

g_object_unref(model);

gtk_widget_set_size_request(view, 100, 200);

gtk_container_add(GTK_CONTAINER(scrolledwindow2),view);

//gtk_window_move(GTK_WINDOW(window2),90,700);

gtk_widget_show(window2);

//gtk_signal_connect (GTK_OBJECT (view), "scroll_event",(GtkSignalFunc)

my_get_scroll, NULL);

statusbar=gtk_statusbar_new();

gtk_box_pack_start(GTK_BOX(vbox),statusbar,FALSE,FALSE,0);

gtk_widget_show(statusbar);

context_id = gtk_statusbar_get_context_id(GTK_STATUSBAR

(statusbar),"my_statusbar");

gtk_statusbar_push (GTK_STATUSBAR (statusbar), context_id, "Not Running.");

gtk_widget_show(window1);

}

void init_x11()

{

GtkWidget *label;

struct process_task *ptask;

guint32 m_RGBA;

gtk_init(NULL,NULL);

gtkhistory=1;

gtkwarrior=1;

gtk_sc_x=max_x;

gtk_sc_y=max_y;

if(b_multi_win)

{

multi_win_init();

}

else

{

one_win_init();

}

for(ptask=primo_task;ptask;ptask=ptask->next)

{

do {

ptask->m_color.red = random() % 65535;

ptask->m_color.green = random() % 65535;

ptask->m_color.blue = random() % 65535;

} while

(ptask->m_color.red+ptask->m_color.green+ptask->m_color.blue<100000);

gdk_color_alloc (execute_colormap, &(ptask->m_color));

}

CAP. A WiCE SourceCode 131

� A.6 x11_output.c

ptask=primo_task;

if(gtkwarrior)

{

do {

gtk_list_store_append(GTK_LIST_STORE(model2), &iter);

pixbuf=gdk_pixbuf_new(GDK_COLORSPACE_RGB,TRUE,8,10,10);

//color_icon(pixbuf,0,0,ptask->m_color.red,ptask->m_color.green,

ptask->m_color.blue,1);

//m_RGBA=get_RGBA(ptask->m_color.red,ptask->m_color.green,ptask->

m_color.blue);

//gdk_pixbuf_fill(pixbuf,m_RGBA);

sprintf(out_str,"#%d (%c)

color(%d,%d,%d)",ptask->ID,ptask->out_symbol,ptask->m_color.red,

ptask->m_color.green,ptask->m_color.blue);

bullet = gdk_pixmap_new (drawing_area->window, 10,10, -1);

gdk_gc_set_foreground (execute_gc, &(ptask->m_color));

gdk_draw_rectangle (bullet, execute_gc, TRUE, 0, 0,10,10);

gdk_pixbuf_get_from_drawable(pixbuf,bullet,NULL,0,0,0,0,10,10);

gtk_list_store_set(GTK_LIST_STORE(model2), &iter,0,

pixbuf,1,"1",2,out_str,-1);

g_object_unref(bullet);

g_object_unref(pixbuf);

ptask=ptask->next;

}while(ptask);

}

// set gtk_timeout_add

timeout_tag=gtk_timeout_add(gtkwaittime,gtk_execute,NULL);

//timeout_tag=gtk_timeout_add(STAT_WAIT_TIME,gtk_statistic,NULL);

context_id = gtk_statusbar_get_context_id(GTK_STATUSBAR

(statusbar),"my_statusbar");

gtk_statusbar_push (GTK_STATUSBAR (statusbar), context_id, "Running....");

gtktask=get_first();

gtk_main ();

}

void deinit_x11()

{

//gtk_exit(0);

}

void x11_print_arena_snap(void)

{

}

CAP. A WiCE SourceCode 132

� A.7 txt_output.h

A.7 txt_output.h

void curses_cell_refresh(int addr,struct process_thread *pt);

void init_txt(void);

void deinit_txt(void);

void curses_print_arena_snap(void);

A.8 txt_output.c

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<string.h>

#include<errno.h>

#include<ctype.h>

#include<ncurses.h>

#include<math.h>

#include<gtk/gtk.h>

#include"main.h"

#include"list_utils.h"

//#include"parse2.h"

#include"pack.h"

//#include"init_game.h"

//#include"scheduler.h"

#include"execute.h"

#include"debug_output.h"

#include"txt_output.h"

#include"x11_output.h"

void curses_cell_refresh(int addr,struct process_thread *pt)

{

int x,y,col;

char car;

addr2coords(addr,&x,&y);

get_p_attr(pt->ptask->ID,&car,&col);

mvaddch(y+yd,x+xd,car);

refresh();

}

void init_txt()

{

int count,curs_x,curs_y,col;

char car;

struct unpacked_op_mem mem;

struct process_task *ptask;

xd=1; /*x offset from beginnig of screen*/

CAP. A WiCE SourceCode 133

� A.8 txt_output.c

yd=1; /*y offest from beginning of screen*/

xl=25; /*x space from end of screen*/

yl=1; /*y space from end of screen*/

initscr();

cbreak();

noecho();

sc_x=COLS-xd-xl;

max_sc_y=LINES-yd-yl;

sc_y=(int)ceil((double)size_arena/(double)sc_x);

txt_y_warrior_list=sc_x+4;

if(output_mode>=OUTPUT_DEBUG)

{

sprintf(out_str,"sc_x=%d sc_y=%d COLS=%d ROWS=%d(max

%d)\n",sc_x,sc_y,COLS,LINES,max_sc_y);

fputs(out_str,fpout);

}

if(sc_y>(LINES-yd-yl))

{

deinit_txt();

sprintf(out_str,"arena y (%d) excedes max video lines (%d)...switching

to VO_NONE mode\n",sc_y,LINES);

fputs(out_str,fpout);

vo_mode=VO_NONE;

return;

}

curs_y=0;

for(count=0;count<size_arena;count++)

{

unpack(count,&mem);

get_p_attr(mem.processID,&car,&col);

addr2coords(count,&curs_x,&curs_y);

mvaddch(curs_y+yd,curs_x+xd,car);

}

// make box

mvaddch(0,0,'+');

for(count=0;count<sc_x;count++) addch('=');

addch('+');

mvaddch(sc_y+1,0,'+');

for(count=0;count<sc_x;count++) addch('=');

addch('+');

for(count=0;count<sc_y;count++)

{

mvaddch(count+yd,0,'|');

mvaddch(count+yd,sc_x+1,'|');

}

CAP. A WiCE SourceCode 134

� A.9 scheduler.h

//print warriors list

for(ptask=primo_task;ptask=ptask;ptask=ptask->next)

{

sprintf(out_str,"V #%d (%c)",ptask->ID,ptask->out_symbol);

mvaddstr(ptask->ID,txt_y_warrior_list,out_str);

}

//

refresh();

}

void deinit_txt()

{

move(sc_y+3+yd,0);

printw("leaving...");

if(g_actual_CPU>=CPU_cicle)

{

sprintf(out_str,"The match is a Draw!!");

}

else

{

sprintf(out_str,"...and the winner is process #%d (%c) , at %d CPU

cicles

\n",primo_task->ID,primo_task->out_symbol,g_actual_CPU);

}

printw(out_str);

getch();

endwin();

}

void curses_print_arena_snap(void)

{

}

A.9 scheduler.h

void play_game(void);

struct process_task* get_first(void);

A.10 scheduler.c

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<string.h>

CAP. A WiCE SourceCode 135

� A.10 scheduler.c

#include<errno.h>

#include<ctype.h>

#include<gtk/gtk.h>

#include"main.h"

#include"list_utils.h"

#include"parse2.h"

#include"pack.h"

#include"init_game.h"

#include"scheduler.h"

struct process_task* get_first()

{

return primo_task;

}

int step(struct process_thread *pt)

{

struct unpacked_op_mem *code;

int alive,old_ip;

code=(struct unpacked_op_mem*)malloc(sizeof(struct unpacked_op_mem));

if(code==NULL) die("error alloking getting opcode from mem_array");

unpack(pt->IP,code);

old_ip=pt->IP;

alive=execute(code,pt);

if(alive)

{

code->processID=pt->ptask->ID;

pack2mem(old_ip,code);

}

return alive;

}

void play_game()

{

struct process_task *ptask,*task_to_kill;

int actual_CPU,alive,infinite_CPU=0;

ptask=get_first();

//init_graph()

actual_CPU=0;

if(CPU_cicle==-1) {CPU_cicle=1;infinite_CPU=1;}

while(actual_CPU++<CPU_cicle)

{

if(infinite_CPU) actual_CPU--;

//control if there is a winner

if(primo_task==ultimo_task) break;

if(sleeptime) sleep(sleeptime);

CAP. A WiCE SourceCode 136

� A.11 parse2.h

alive=step(ptask->cur_thread);

if(alive)

{

ptask->cur_thread=ptask->cur_thread->next;

if(ptask->cur_thread==NULL) ptask->cur_thread=ptask->primo_thread;

}

else

{

del_thread(ptask->cur_thread);

if(output_mode>=OUTPUT_DEBUG)

{

sprintf(out_str,"proc #%d: thread killed. \n",ptask->ID);

if(vo_mode==VO_NONE && log_mode) fputs(out_str,fpout);

if(vo_mode==VO_FRAMEBUFFER) mvaddstr(sc_y+2+yd,0,out_str);

}

}

task_to_kill=ptask;

ptask=ptask->next; if(ptask==NULL) ptask=primo_task;

if(task_to_kill->cur_thread==NULL)

{

if(output_mode>=OUTPUT_DEBUG)

{

sprintf(out_str,"process killed. \n");

if(vo_mode==VO_NONE && log_mode) fputs(out_str,fpout);

if(vo_mode==VO_FRAMEBUFFER) mvaddstr(sc_y+2+yd,0,out_str);

}

if(vo_mode==VO_FRAMEBUFFER)

{

mvaddch(task_to_kill->ID,txt_y_warrior_list,'X');

sprintf(out_str,"process killed. \n");

mvaddstr(sc_y+2+yd,0,out_str);

}

del_task(task_to_kill);

}

}

g_actual_CPU=actual_CPU;

}

A.11 parse2.h

unsigned int solve_vt(char *name,struct Process *proc);

unsigned int solve_expr(struct expr_node *expr,struct Process *proc);

void generate_code(struct Process *proc);

CAP. A WiCE SourceCode 137

� A.12 parse2.c

A.12 parse2.c

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<string.h>

#include<errno.h>

#include<ctype.h>

#include<gtk/gtk.h>

#include"main.h"

#include"list_utils.h"

#include"parse2.h"

#include"pack.h"

unsigned int solve_vt(char *name,struct Process *proc)

{

unsigned int val;

struct var_table *vt;

for(vt=proc->pc->vt_first;vt;vt=vt->next)

{

if(((strcmp(name,vt->name))==0) || ((strcmp(name,vt->name+1))==0))

{

val=solve_expr(vt->val_first,proc);

if(vt->name[0]==':'){val=val-current_make_node;} // adjust for labels

return val;

}

}

return -1;

}

unsigned int solve_expr(struct expr_node *expr,struct Process *proc)

{

int val,lval,rval;

if(expr->type==NUMBER)

{

val=atoi(expr->str);

return (val%size_arena);

}

if(expr->type==VAR)

{

val=solve_vt(expr->str,proc);

return (val%size_arena);

}

if(expr->type){

if(expr->left)

CAP. A WiCE SourceCode 138

� A.12 parse2.c

{

lval=solve_expr(expr->left,proc);

}

if(expr->right)

{

rval=solve_expr(expr->right,proc);

}

if((strcmp("+",expr->str))==0)

{

val=(lval+rval)%size_arena;

return val;

}

if((strcmp("-",expr->str))==0)

{

val=(lval-rval)%size_arena;

return val;

}

if((strcmp("*",expr->str))==0)

{

val=(lval*rval)%size_arena;

return val;

}

if((strcmp("/",expr->str))==0)

{

val=(lval/rval)%size_arena;

return val;

}

if((strcmp("%",expr->str))==0)

{

val=(lval%rval)%size_arena;

return val;

}

if((strcmp("==",expr->str))==0)

{

val=lval==rval;

return val;

}

if((strcmp("!=",expr->str))==0)

{

val=lval!=rval;

return val;

}

if((strcmp("<",expr->str))==0)

{

val=lval<rval;

CAP. A WiCE SourceCode 139

� A.12 parse2.c

return val;

}

if((strcmp(">",expr->str))==0)

{

val=lval>rval;

return val;

}

if((strcmp("<=",expr->str))==0)

{

val=lval<=rval;

return val;

}

if((strcmp(">=",expr->str))==0)

{

val=lval>=rval;

return val;

}

}

}

void compute_asserts(struct Process *proc)

{

struct var_table *vt;

struct expr_node *expr;

unsigned int ret_val;

for(vt=proc->pc->vt_first;vt;vt=vt->next)

{

if((strcmp(vt->name,ASSERT_STR))==0)

{

ret_val=solve_expr(vt->val_first,proc);

if(!ret_val)

{

die("assert condition failed");

}

}

}

}

void generate_code(struct Process *proc)

{

struct instruction_node *in;

struct unpacked_op_mem op_mem;

void *new_code;

char s1[MAXSTR];

int x;

compute_asserts(proc);

CAP. A WiCE SourceCode 140

� A.12 parse2.c

for(in=proc->pc->first;in;in=in->next)

{

op_mem.processID=proc->processID;

op_mem.opcode=str_to_code(in->instr);

op_mem.a_pref=str_to_code(in->laddr);

op_mem.b_pref=str_to_code(in->raddr);

if((strcmp(in->modifier,"NULL"))==0) {get_default_mod(&op_mem);} else

{op_mem.mod=str_to_code(in->modifier);}

current_make_node=in->num_node;

if(in->left) {op_mem.a_val=solve_expr(in->left,proc);} else

{op_mem.a_val=0;}

if(in->right) {op_mem.b_val=solve_expr(in->right,proc);} else

{op_mem.b_val=0;}

//malloc void/struct

if(arena_mem_type==MEM_TYPE_ONE) new_code=(struct

array_mem_small*)malloc(sizeof(struct array_mem_small));

if(arena_mem_type==MEM_TYPE_TWO) new_code=(struct

array_mem_mid*)malloc(sizeof(struct array_mem_mid));

if(arena_mem_type==MEM_TYPE_FOUR) new_code=(struct

array_mem_norm*)malloc(sizeof(struct array_mem_norm));

if(new_code==NULL)

{sprintf(s1,"at line %d ",in->line_count);die("error malloking new_code struct");}

//jump adjust

//if((op_mem.opcode==op_JMP)||(op_mem.opcode==op_JMZ)||(op_mem.opcode==

op_JMN)||(op_mem.opcode==op_DJN))

//{

// op_mem.a_val=(op_mem.a_val-in->num_node)%size_arena;

//}

//pack

pack(&op_mem,new_code);

//add code_node

in->code=new_code;

}

//solve_org

if((strcmp(proc->pc->org,""))!=0)

{

current_make_node=0;

x=solve_vt(proc->pc->org,proc);

sprintf(proc->pc->org,"%d",x);

}

}

CAP. A WiCE SourceCode 141

� A.13 parse.h

A.13 parse.h

void read_file(char *filename,struct Process **pproc);

void parse(char *filename);

void visit_tree(struct expr_node *expr);

void print_data(struct Process *proc);

A.14 parse.c

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<string.h>

#include<errno.h>

#include<ctype.h>

#include<gtk/gtk.h>

#include"main.h"

#include"list_utils.h"

char my_token[MAXSTR];

char* skip_space(char *p)

{

while ((*p==' ')||(*p=='\t')) p++;

return p;

}

char* get_word(char *p)

{

int n=0;

while(isalnum(*p))

{

my_token[n++]=*p;

p++;

}

my_token[n]='\0';

return p;

}

char* get_num(char *p)

{

int n=0;

if(*p=='-') {my_token[n++]=*p;p++;p=skip_space(p);}

while(isdigit(*p))

{

my_token[n++]=*p;

CAP. A WiCE SourceCode 142

� A.14 parse.c

p++;

}

my_token[n]='\0';

return p;

}

char* get_sym(char *p)

{

int n=0;

my_token[n]=*p;

p++;n++;

if(my_token[0]=='=')

{

if(*p=='=') {my_token[n]=*p;p++;n++;}

}

if(my_token[0]=='!')

{

if(*p=='=') {my_token[n]=*p;p++;n++;}

}

my_token[n]='\0';

return p;

}

char* get_token(char *p)

{

if(isalpha(*p)) {p=get_word(p);} else

if((isdigit(*p))||((*p=='-')&&(isdigit(*(p+1))))) {p=get_num(p);}

else {p=get_sym(p);}

return p;

}

void take_assert(char *p)

{}

int take_instr1(char *token,char *p)

{}

void take_instr2(char *token,char *p)

{}

void take_equ(char *token,char *p)

{}

int is_instr(char *token,int line_count)

{

static char *valid_instr[]={

"mov","2","dat","2","nop","0","add","2","sub","2","mul","2","div","2","mod",

"2","jmp","1",

"jmz","1","jmn","1","djn","1","spl","1","cmp","2","seq","2","sne","2","slt",

"2","ldp","2",

"stp","2","ctin","2","ctout","2","cpin","2","cpout","2"

CAP. A WiCE SourceCode 143

� A.14 parse.c

,"NULL","0"

};

int n;

char s1[MAXSTR];

for(n=0;;n+=2)

{

if((strcasecmp(valid_instr[n],"NULL"))==0) break;

if((strcasecmp(valid_instr[n],token))==0)

return(atoi(valid_instr[n+1]));

}

//sprintf(s1,"invalid instruction at line %d .",line_count);

//die(s1);

return -1;

}

char* get_addr_mode(char *p)

{

char ss[]="#$*@{}<>";

int n;

my_token[0]='$';my_token[1]='\0';

for(n=0;n<=7;n++)

if(*p==ss[n]){my_token[0]=*p;my_token[1]='\0';p++;break;}

return p;

}

int get_processID()

{

static int p=0;

return (++p);

}

void is_modifier(char *token,int line_count)

{

static char *valid_modifier[]={

"a","b","ab","ba","f","x","i","NULL"

};

int n;

char s1[MAXSTR];

for(n=0;;n++)

{

if((strcasecmp(valid_modifier[n],"NULL"))==0) break;

if((strcasecmp(valid_modifier[n],token))==0) return ;

}

sprintf(s1,"invalid modifier at line %d .",line_count);

die(s1);

}

int is_op(int line_count)

{

CAP. A WiCE SourceCode 144

� A.14 parse.c

char s1[MAXSTR];

if(my_token[0]=='+') return OP_ADD;

if(my_token[0]=='-') return OP_ADD;

if(my_token[0]=='*') return OP_MUL;

if(my_token[0]=='/') return OP_MUL;

if(my_token[0]=='%') return OP_MUL;

sprintf(s1,"parse error at line %d. not a valid operation

symbol",line_count);

die(s1);

}

int is_bool_op(char *p,int line_cout)

{

p=get_token(p);

if((strcmp(my_token,"=="))==0) return 1;

if((strcmp(my_token,"!="))==0) return 1;

if((strcmp(my_token,"<="))==0) return 1;

if((strcmp(my_token,">="))==0) return 1;

if((strcmp(my_token,">"))==0) return 1;

if((strcmp(my_token,"<"))==0) return 1;

if((strcmp(my_token,"="))==0) return 1;

return 0;

}

int is_item(int line_count)

{

char s1[MAXSTR];

if((isdigit(my_token[0]))||((my_token[0]=='-')&&(isdigit(my_token[1]))))

return NUMBER;

if(isalpha(my_token[0])) return VAR;

sprintf(s1,"parse error at line %d. not a valid number or

variable",line_count);

die(s1);

}

char* get_arg(struct expr_node **expr,char *p,int line_count)

{

int m_type;

struct expr_node *new_expr,*new_expr2,*save_expr,*save_tree;

char s1[MAXSTR];

p=get_token(p);

m_type=is_item(line_count);

new_expr=(struct expr_node*)malloc(sizeof(struct expr_node));

if(new_expr==NULL)

{ sprintf(s1,"at line %d, error malloc exr_node",line_count);die(s1);}

new_expr->type=m_type;

strncpy(new_expr->str,my_token,MAXSTR);

CAP. A WiCE SourceCode 145

� A.14 parse.c

new_expr->left=NULL;

new_expr->right=NULL;

p=skip_space(p);

if((*p=='\n')||(*p==',')|| (is_bool_op(p,line_count)))

{

*expr=new_expr;

return p;

}

p=get_token(p);

m_type=is_op(line_count);

new_expr2=(struct expr_node*)malloc(sizeof(struct expr_node));

if(new_expr2==NULL)

{ sprintf(s1,"at line %d, error malloc exr_node",line_count);die(s1);}

new_expr2->type=m_type;

strncpy(new_expr2->str,my_token,MAXSTR);

new_expr2->left=new_expr;

new_expr2->right=NULL;

*expr=new_expr2;

p=skip_space(p);

p=get_arg(&(new_expr2->right),p,line_count);

if((new_expr2->type<new_expr2->right->type)&&(new_expr2->type<3)&&(new_expr2

->right->type<3))

{

save_expr=new_expr2->right;

save_tree=new_expr2->right->left;

new_expr2->right->left=new_expr2;

save_expr->left->right=save_tree;

*expr=save_expr;

}

return p;

}

char* get_b_arg(struct expr_node **expr,char *p,int line_count)

{

struct expr_node *new_expr,*new_expr2,*new_expr3;

char s1[MAXSTR];

p=get_arg(&new_expr,p,line_count);

p=skip_space(p);

if((*p=='\n')||(*p==','))

{

*expr=new_expr;

return p;

}

//if is_bool_op(p)

if(is_bool_op(p,line_count))

{

CAP. A WiCE SourceCode 146

� A.14 parse.c

new_expr2=(struct expr_node*)malloc(sizeof(struct expr_node));

if(new_expr2==NULL)

{ sprintf(s1,"at line %d, error malloc exr_node",line_count);die(s1);}

new_expr2->type=OP_BOOL;

p=get_token(p);

strncpy(new_expr2->str,my_token,MAXSTR);

new_expr2->left=new_expr;

new_expr2->right=NULL;

p=skip_space(p);

p=get_arg(&new_expr3,p,line_count);

new_expr2->right=new_expr3;

*expr=new_expr2;

}

return p;

}

void insert_label(char *label2,int label_val,int line_num,struct Process *proc)

{

struct var_table *vt,*new_vt;

struct expr_node *expr;

char s1[MAXSTR],label[MAXSTR];

sprintf(label,":%s",label2);

for(vt=proc->pc->vt_first;vt;vt=vt->next)

if((strcmp(vt->name,label))==0)

{

sprintf(s1,"sorry, the label at line %d already exists",line_num);

die(s1);

}

new_vt=(struct var_table*)malloc(sizeof(struct var_table));

if(new_vt==NULL) die("error allocating new_vt");

expr=(struct expr_node*)malloc(sizeof(struct expr_node));

if(expr==NULL) die("error allcating expr");

strncpy(new_vt->name,label,MAXSTR);

new_vt->val_first=expr;

new_vt->val_last=expr;

expr->left=NULL;

expr->right=NULL;

expr->type=NUMBER;

sprintf(expr->str,"%d",label_val);

add_vt(proc,new_vt);

}

void insert_in_vt(char *varname,struct expr_node *expr,int line_num,struct

Process *proc)

{

struct var_table *vt,*new_vt;

//struct expr_node *expr;

CAP. A WiCE SourceCode 147

� A.14 parse.c

char s1[MAXSTR];

if((strcmp(varname,ASSERT_STR))!=0)

for(vt=proc->pc->vt_first;vt;vt=vt->next)

if((strcmp(vt->name,varname))==0)

{

sprintf(s1,"sorry, the variable at line %d already exists",line_num);

die(s1);

}

new_vt=(struct var_table*)malloc(sizeof(struct var_table));

if(new_vt==NULL) die("error allocating new_vt");

//expr=(struct expr_node*)malloc(sizeof(struct expr_node));

//if(expr==NULL) die("error allcating expr");

strncpy(new_vt->name,varname,MAXSTR);

new_vt->val_first=expr;

new_vt->val_last=expr;

//expr->left=expr;

//expr->right=NULL;

//expr->type=NUMBER;

//sprintf(expr->str,"%d",label_val);

add_vt(proc,new_vt);

}

void add_environment_costant(char *env_name,int val,struct Process *proc)

{

struct var_table *vt;

struct expr_node *expr;

vt=(struct var_table*)malloc(sizeof(struct var_table));

if(vt==NULL) die("error allocating vt in add_environment_contants");

expr=(struct expr_node*)malloc(sizeof(struct expr_node));

if(expr==NULL) die("error on allocating exprin add_environment_contants");

expr->left=NULL;

expr->right=NULL;

expr->type=NUMBER;

sprintf(expr->str,"%d",val);

strncpy(vt->name,env_name,MAXSTR);

vt->val_first=expr;

vt->val_last=expr;

add_vt(proc,vt);

}

void add_environment_costants(struct Process *proc)

{

add_environment_costant("CORESIZE",size_arena,proc);

add_environment_costant("WARRIORS",warriors,proc);

add_environment_costant("MAXPROCESSES",maxprocesses,proc);

add_environment_costant("MAXCYCLES",CPU_cicle,proc);

add_environment_costant("MAXLENGTH",max_prog_size,proc);

CAP. A WiCE SourceCode 148

� A.14 parse.c

add_environment_costant("MINDISTANCE",min_distance,proc);

add_environment_costant("VERSION",version,proc);

}

void read_file(char *filename,struct Process **pproc)

{

FILE *fp;

char *endfile,line[MAXSTR],*p,save_token[MAXSTR];

int label_bool=0,line_count=0,num_code=0,n_args;

struct instruction_node *new_instr;

struct Process *proc;

struct expr_node *new_expr;

proc=(struct Process*)malloc(sizeof(struct Process));

if(proc==NULL) die("errore nell'allocare struct Process");

proc->pt=NULL;

proc->pc=NULL;

proc->prev=NULL;

proc->next=NULL;

proc->processID=get_processID();

fp=fopen(filename,"r");

if(fp==NULL) die("error opening file");

proc->pc=(struct process_construct*)malloc(sizeof(struct

process_construct));

if(proc->pc==NULL) die("errore nell'allocare process_construct");

proc->pc->first=NULL;

proc->pc->last=NULL;

proc->pc->len=0;

proc->pc->org[0]='\0';

proc->pc->vt_first=NULL;

proc->pc->vt_last=NULL;

while((endfile=fgets(line,MAXSTR,fp))!=NULL)

{

line_count++;

p=&line[0];

if(*p==';') continue;

p=skip_space(p);

if(*p=='\n') continue;

p=get_token(p);

p=skip_space(p);

if((strcmp(my_token,"org"))==0)

{

p=get_word(p);strncpy(proc->pc->org,my_token,MAXSTR);

if(*p!='\n') {sprintf(save_token,"parse error at line %d. not an end

line after the org argument",line_count);die(save_token);}

continue;

}

CAP. A WiCE SourceCode 149

� A.14 parse.c

if((strcmp(my_token,"end"))==0)

{

p=skip_space(p);

if(*p!='\n') {sprintf(save_token,"parse error after 'end' at line

%d.",line_count);die(save_token);}

break;

}

if((strcmp(my_token,"assert"))==0)

{

take_assert(p);

new_expr=(struct expr_node*)malloc(sizeof(struct expr_node));

if(new_expr==NULL)

{printf("at line %d, ",line_count);die("error allocating

new_expr");}

p=skip_space(p);

p=get_b_arg(&new_expr,p,line_count);

insert_in_vt(ASSERT_STR,new_expr,line_count,proc);

continue;

}

if(*p==':')

{

insert_label(my_token,num_code,line_count,proc);p=skip_space(++p);

if(*p=='\n') continue;

p=get_token(p);

}

n_args=is_instr(my_token,line_count);

if(n_args!=-1)

{

new_instr=(struct instruction_node*)malloc(sizeof(struct

instruction_node));

if(new_instr==NULL) {printf("at line %d , ",line_count);die("error

allocating new_instr");}

strncpy(new_instr->instr,my_token,MAXSTR);

new_instr->num_node=num_code++;

new_instr->line_count=line_count;

new_instr->prev=NULL;

new_instr->next=NULL;

new_instr->code=NULL;

new_instr->left=NULL;

new_instr->right=NULL;

new_instr->laddr[0]='#';new_instr->laddr[1]='\0';

new_instr->raddr[0]='#';new_instr->raddr[1]='\0';

strcpy(new_instr->modifier,"NULL");

if(*p=='.'){

p=get_word(++p);is_modifier(my_token,line_count);

CAP. A WiCE SourceCode 150

� A.14 parse.c

strncpy(new_instr->modifier,my_token,MAXMOD);

}

p=skip_space(p);

if(n_args>0)

{

p=get_addr_mode(p); //$ by default. the result is in my_token

new_instr->laddr[0]=my_token[0];

new_instr->laddr[1]='\0';

//p=get_token(p);

//new_instr->left=(struct expr_node*)malloc(sizeof(struct

expr_node));

//if(new_instr->left==NULL){

//printf("at line %d , ",line_count);die("error alocating left

expr");}

p=get_arg(&new_instr->left,p,line_count);

p=skip_space(p);

if(n_args>1)

{

if(*p!=',')

{printf("at line %d , ",line_count);die("a comma expected

(,)");}

p=skip_space(++p);

p=get_addr_mode(p); //$ by default. the result is in

my_token

new_instr->raddr[0]=my_token[0];

new_instr->raddr[1]='\0';

//p=get_token(p);

//new_instr->right=(struct expr_node*)malloc(sizeof(struct

expr_node));

//if(new_instr->right==NULL){

//printf("at line %d , ",line_count);die("error allocating

right expr");}

p=get_arg(&new_instr->right,p,line_count);

p=skip_space(p);

}

}

if(*p!='\n')

{printf("at line %d , ",line_count);die("not an ending line after

command");}

//add the node

add_node(new_instr,proc);

continue;

}

strncpy(save_token,my_token,MAXSTR);

p=get_token(p);

CAP. A WiCE SourceCode 151

� A.14 parse.c

if((strcmp(my_token,"equ"))==0)

{

new_expr=(struct expr_node*)malloc(sizeof(struct expr_node));

if(new_expr==NULL)

{printf("at line %d, ",line_count);die("error allocating

new_expr");}

p=skip_space(p);

p=get_arg(&new_expr,p,line_count);

insert_in_vt(save_token,new_expr,line_count,proc);

continue;

}

}

fclose(fp);

proc->pc->len=num_code;

add_proc(proc);

*pproc=proc;

}

void visit_tree(struct expr_node *expr)

{

if(expr)

{

sprintf(out_str,"%s",expr->str);fputs(out_str,fpout);

if(expr->type>2) return;

sprintf(out_str,"(");fputs(out_str,fpout);

visit_tree(expr->left);

sprintf(out_str,",");fputs(out_str,fpout);

visit_tree(expr->right);

sprintf(out_str,")");fputs(out_str,fpout);

}

}

void print_data(struct Process *proc)

{

struct process_construct *pc;

struct instruction_node *in;

struct expr_node *expr;

struct var_table *vt;

if(!DO_DEBUG) return;

for(in=proc->pc->first;in;in=in->next)

{

sprintf(out_str,"{line(%d[%d]),%s",in->num_node,in->line_count,in->instr

);fputs(out_str,fpout);

if(in->left)

{

sprintf(out_str,"(%c ",*in->laddr);fputs(out_str,fpout);

CAP. A WiCE SourceCode 152

� A.14 parse.c

visit_tree(in->left);

if(in->right)

{

sprintf(out_str,",%c ",*in->raddr);fputs(out_str,fpout);

visit_tree(in->right);

}

sprintf(out_str,")");fputs(out_str,fpout);

}

sprintf(out_str,"};");fputs(out_str,fpout);

}

sprintf(out_str,"\n---var table---\n");fputs(out_str,fpout);

for(vt=proc->pc->vt_first;vt;vt=vt->next)

{

sprintf(out_str,"%s

%s",vt->name,vt->val_first->str);fputs(out_str,fpout);

if(vt->val_first->left)

{

sprintf(out_str,"(");fputs(out_str,fpout);

visit_tree(vt->val_first->left);

if(vt->val_first->right)

{

sprintf(out_str,",");fputs(out_str,fpout);

visit_tree(vt->val_first->right);

}

sprintf(out_str,")");fputs(out_str,fpout);

}

sprintf(out_str,"\n");fputs(out_str,fpout);

}

}

void parse(char *filename)

{

struct Process *proc;

//proc=(struct Process*)malloc(sizeof(struct Process));

//if(proc==NULL) die("errore nell'allocare struct Process");

//proc->pt=NULL;

//proc->pc=NULL;

//proc->prev=NULL;

//proc->next=NULL;

proc=NULL;

read_file(filename,&proc);

add_environment_costants(proc);

if(output_mode>=OUTPUT_DEBUG) print_data(proc);

generate_code(proc);

}

CAP. A WiCE SourceCode 153

� A.15 pack.h

A.15 pack.h

#define op_NOP 1

#define op_DAT 0

#define op_MOV 2

#define op_ADD 3

#define op_SUB 4

#define op_MUL 5

#define op_DIV 6

#define op_MOD 7

#define op_JMP 8

#define op_JMZ 9

#define op_JMN 10

#define op_DJN 11

#define op_SPL 12

#define op_CMP 13

#define op_SEQ 14

#define op_SNE 15

#define op_SLT 16

#define op_LDP 17

#define op_STP 18

#define op_CTIN 19

#define op_CTOUT 20

#define op_CPIN 21

#define op_CPOUT 22

#define op_IMM 0

// #

#define op_DIR 2

// $

#define op_A_IND 3

// *

#define op_B_IND 4

// @

#define op_A_IND_PREDEC 5

// {

#define op_B_IND_PREDEC 6

// <

#define op_A_IND_POSTINC 7

// }

#define op_B_IND_POSTINC 1

// >

#define op_A 0

#define op_B 1

#define op_AB 2

#define op_BA 3

CAP. A WiCE SourceCode 154

� A.16 pack.c

#define op_F 4

#define op_X 5

#define op_I 6

int str_to_code(char *str);

void get_default_mod(struct unpacked_op_mem *op);

void pack(struct unpacked_op_mem *in,void *out);

void unpack(int ip,struct unpacked_op_mem *out);

void pack2mem(int ip,struct unpacked_op_mem *in);

A.16 pack.c

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<string.h>

#include<errno.h>

#include<ctype.h>

#include<gtk/gtk.h>

#include"main.h"

#include"list_utils.h"

#include"parse2.h"

#include"pack.h"

int str_to_code(char *str)

{

static char *conv_table[]={

"nop","1","dat","0","mov","2","add","3","sub","4","mul","5","div","6","mod",

"7","jmp","8",

"jmz","9","jmn","10","djn","11","spl","12","cmp","13","seq","14","sne","15",

"slt","16","ldp","17",

"stp","18","ctin","19","ctout","20","cpin","21","cpout","22"

,"#","0","$","2","*","3","@","4","{","5","<","6","}","7",">","1"

,"a","0","b","1","ab","2","ba","3","f","4","x","5","i","6"

,"NULL","-1"

};

int n,retval;

for(n=0;;n+=2)

{

if((strcasecmp(conv_table[n],"NULL"))==0) break;

if((strcasecmp(conv_table[n],str))==0)

{

retval=atoi(conv_table[n+1]);

return retval;

CAP. A WiCE SourceCode 155

� A.16 pack.c

}

}

return -1;

}

void get_default_mod(struct unpacked_op_mem *op)

{

switch(op->opcode)

{

case op_NOP:

case op_DAT:

op->mod=op_F;

break;

case op_MOV:

case op_SEQ:

case op_SNE:

case op_CMP:

op->mod=op_I;

if(op->b_pref==op_IMM) op->mod=op_B;

if(op->a_pref==op_IMM) op->mod=op_AB;

break;

case op_ADD:

case op_SUB:

case op_MUL:

case op_DIV:

case op_MOD:

op->mod=op_F;

if(op->b_pref==op_IMM) op->mod=op_B;

if(op->a_pref==op_IMM) op->mod=op_AB;

break;

case op_SLT:

case op_LDP:

case op_STP:

op->mod=op_B;

if(op->a_pref==op_IMM) op->mod=op_AB;

break;

case op_JMP:

case op_JMZ:

case op_DJN:

case op_SPL:

op->mod=op_B;

break;

case op_CTIN:

case op_CTOUT:

case op_CPIN:

CAP. A WiCE SourceCode 156

� A.16 pack.c

case op_CPOUT:

op->mod=op_F;

break;

default:

break;

}

}

void pack(struct unpacked_op_mem *in,void *out)

{

struct array_mem_small *msmall;

struct array_mem_mid *mmid;

struct array_mem_norm *mlarge;

if(arena_mem_type==MEM_TYPE_ONE)

{

msmall=(struct arena_mem_small*)out;

msmall->mem=(in->processID<<28)+(in->opcode<<23)+(in->mod<<19)+(in->

a_pref<<16)+(in->b_pref<<13)+(in->a_val<<7)+(in->b_val<<1);

}

if(arena_mem_type==MEM_TYPE_TWO)

{

mmid=(struct arena_mem_mid*)out;

mmid->processID_opcode=(in->processID<<16)+(in->opcode<<12)+(in->mod<<8)

+(in->a_pref<<5)+(in->b_pref<<2);

mmid->arg1_arg2=(in->a_val<<16)+(in->b_val);

}

if(arena_mem_type==MEM_TYPE_FOUR)

{

mlarge=(struct arena_mem_norm*)out;

mlarge->processID=in->processID;

mlarge->opcode=(in->mod<<28)+(in->a_pref<<25)+(in->b_pref<<22)+in->

opcode;

mlarge->arg1=in->a_val;

mlarge->arg2=in->b_val;

}

}

void unpack(int ip,struct unpacked_op_mem *out)

{

struct array_mem_small *msmall;

struct array_mem_mid *mmid;

struct array_mem_norm *mlarge;

if(arena_mem_type==MEM_TYPE_ONE)

{

CAP. A WiCE SourceCode 157

� A.16 pack.c

msmall=(struct mem_type_small*)arena;

out->b_val=(msmall[ip].mem>>1)&63;

out->a_val=(msmall[ip].mem>>7)&63;

out->b_pref=(msmall[ip].mem>>13)&7;

out->a_pref=(msmall[ip].mem>>16)&7;

out->mod=(msmall[ip].mem>>19)&15;

out->opcode=(msmall[ip].mem>>23)&31;

out->processID=(msmall[ip].mem>>28)&15;

}

if(arena_mem_type==MEM_TYPE_TWO)

{

mmid=(struct mem_type_mid*)arena;

out->b_val=(mmid[ip].arg1_arg2)&65535;

out->a_val=(mmid[ip].arg1_arg2>>16)&65535;

out->b_pref=(mmid[ip].processID_opcode>>2)&7;

out->a_pref=(mmid[ip].processID_opcode>>5)&7;

out->mod=(mmid[ip].processID_opcode>>8)&15;

out->opcode=(mmid[ip].processID_opcode>>12)&31;

out->processID=(mmid[ip].processID_opcode>>16)&65535;

}

if(arena_mem_type==MEM_TYPE_FOUR)

{

mlarge=(struct mem_type_norm*)arena;

out->a_val=mlarge[ip].arg1;

out->b_val=mlarge[ip].arg2;

out->processID=mlarge[ip].processID;

out->opcode=(mlarge[ip].opcode)&31;

out->b_pref=(mlarge[ip].opcode>>22)&7;

out->a_pref=(mlarge[ip].opcode>>25)&7;

out->mod=(mlarge[ip].opcode>>28)&15;

}

}

void pack2mem(int ip,struct unpacked_op_mem *in)

{

struct array_mem_small *msmall;

struct array_mem_mid *mmid;

struct array_mem_norm *mlarge;

if(arena_mem_type==MEM_TYPE_ONE)

{

msmall=(struct arena_mem_small*)arena;

msmall[ip].mem=(in->processID<<28)+(in->opcode<<23)+(in->mod<<19)+(in->

a_pref<<16)+(in->b_pref<<13)+(in->a_val<<7)+(in->b_val<<1);

}

if(arena_mem_type==MEM_TYPE_TWO)

CAP. A WiCE SourceCode 158

� A.17 list_util.h

{

mmid=(struct arena_mem_mid*)arena;

mmid[ip].processID_opcode=(in->processID<<16)+(in->opcode<<12)+(in->mod<

<8)+(in->a_pref<<5)+(in->b_pref<<2);

mmid[ip].arg1_arg2=(in->a_val<<16)+(in->b_val);

}

if(arena_mem_type==MEM_TYPE_FOUR)

{

mlarge=(struct arena_mem_norm*)arena;

mlarge[ip].processID=in->processID;

mlarge[ip].opcode=(in->mod<<28)+(in->a_pref<<25)+(in->b_pref<<22)+in->

opcode;

mlarge[ip].arg1=in->a_val;

mlarge[ip].arg2=in->b_val;

}

}

A.17 list_util.h

void die(char *s);

void add_vt(struct Process *proc,struct var_table *vt);

void add_proc(struct Process *proc);

void add_node(struct instruction_node *node,struct Process *proc);

void add_thread(struct process_thread *thread,struct process_task *task);

void add_task(struct process_task *task);

void del_task(struct process_task *task);

void addr2coords(int addr,int *x,int *y);

void get_p_attr(int ID,char *car,int *col);

void add_killed_task(struct process_task *task);

void add_thread_rev(struct process_thread *thread,struct process_task *task);

void ctout(struct process_thread *pt);

void cpout(struct process_task *ptask);

A.18 list_utils.c

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<string.h>

#include<math.h>

#include<gtk/gtk.h>

#include"main.h"

CAP. A WiCE SourceCode 159

� A.18 list_utils.c

void die(char *s)

{

//char s[MAXCHAR];

sprintf(out_str,"%s\n",s);

fputs(out_str,fpout);

exit(1);

}

void add_vt(struct Process *proc,struct var_table *vt)

{

if(proc->pc->vt_first==NULL)

{

proc->pc->vt_first=vt;

proc->pc->vt_last=vt;

return;

}

vt->prev=proc->pc->vt_last;

proc->pc->vt_last->next=vt;

proc->pc->vt_last=vt;

}

void add_proc(struct Process *proc)

{

if(proc_primo==NULL)

{

proc_primo=proc;

proc_ultimo=proc;

}

else

{

proc->prev=proc_ultimo;

proc_ultimo->next=proc;

proc_ultimo=proc;

}

}

void add_node(struct instruction_node *node,struct Process *proc)

{

if(proc->pc->first==NULL)

{

proc->pc->first=node;

proc->pc->last=node;

return;

}

proc->pc->last->next=node;

node->prev=proc->pc->last;

proc->pc->last=node;

}

CAP. A WiCE SourceCode 160

� A.18 list_utils.c

void add_thread(struct process_thread *thread,struct process_task *task)

{

thread->ptask=task;

if(task->primo_thread==NULL)

{

task->primo_thread=thread;

task->ultimo_thread=thread;

thread->prev=NULL;

thread->next=NULL;

return;

}

task->ultimo_thread->next=thread;

thread->prev=task->ultimo_thread;

thread->next=NULL;

task->ultimo_thread=thread;

}

void add_thread_rev(struct process_thread *thread,struct process_task *task)

{

thread->ptask=task;

if(task->primo_thread==NULL)

{

task->primo_thread=thread;

task->ultimo_thread=thread;

thread->prev=NULL;

thread->next=NULL;

return;

}

task->primo_thread->prev=thread;

thread->prev=NULL;

thread->next=task->primo_thread;

task->primo_thread=thread;

}

void add_task(struct process_task *task)

{

if(primo_task==NULL)

{

primo_task=task;

ultimo_task=task;

task->prev=NULL;

task->next=NULL;

return;

}

ultimo_task->next=task;

task->prev=ultimo_task;

task->next=NULL;

CAP. A WiCE SourceCode 161

� A.18 list_utils.c

ultimo_task=task;

}

void del_task(struct process_task *task)

{

struct process_thread *pt,*opt;

if(primo_task==ultimo_task)

{

primo_task=NULL;

ultimo_task=NULL;

}

else

{

if(task->prev)

{task->prev->next=task->next;}else{primo_task=task->next;primo_task->

prev=NULL;}

if(task->next)

{task->next->prev=task->prev;}else{ultimo_task=task->prev;ultimo_task->

next=NULL;}

}

pt=task->primo_thread;

//delete all related threads

while(pt){

opt=pt;

pt=pt->next;

free(opt);

};

free(task);

}

void del_thread(struct process_thread *pt)

{

pt->ptask->n_threads--;

if(pt==pt->ptask->cur_thread)

{

pt->ptask->cur_thread=pt->next;

if(pt->next==NULL) pt->ptask->cur_thread=pt->ptask->primo_thread;

}

if(pt->ptask->primo_thread==pt->ptask->ultimo_thread)

{

pt->ptask->primo_thread=NULL;

pt->ptask->ultimo_thread=NULL;

pt->ptask->cur_thread=NULL;

}

else

{

if(pt->prev)

CAP. A WiCE SourceCode 162

� A.18 list_utils.c

{pt->prev->next=pt->next;}else{pt->ptask->primo_thread=pt->next;pt->

ptask->primo_thread->prev=NULL;}

if(pt->next)

{pt->next->prev=pt->prev;}else{pt->ptask->ultimo_thread=pt->prev;pt->

ptask->ultimo_thread->next=NULL;}

}

free(pt);

}

void add_killed_task(struct process_task *task)

{

if(first_killed_task==NULL)

{

first_killed_task=task;

last_killed_task=task;

task->prev=NULL;

task->next=NULL;

return;

}

last_killed_task->next=task;

task->prev=last_killed_task;

task->next=NULL;

last_killed_task=task;

}

void addr2coords(int addr,int *x,int *y)

{

*x=addr % sc_x;

*y=(int)(((double)addr)/((double)sc_x));

}

void get_p_attr(int ID,char *car,int *col)

{

struct process_task *proc;

*car=63;

*col=-1;

if(ID==0) {*car='.';*col=0;return;}

for(proc=primo_task;proc;proc=proc->next)

{

if(proc->ID==ID)

{

*car=proc->out_symbol;

*col=proc->out_color;

return;

}

}

}

void ctout(struct process_thread *pt)

CAP. A WiCE SourceCode 163

� A.19 execute.h

{

struct process_thread *ppt;

for(ppt=pt->ptask->primo_thread;ppt;ppt=ppt->next)

{

ppt->communication_in_a=pt->communication_out_a;

ppt->communication_in_b=pt->communication_out_b;

}

}

void cpout(struct process_task *ptask)

{

struct process_task *pptask;

for(pptask=primo_task;pptask;pptask=pptask->next)

{

pptask->communication_in_a=ptask->communication_out_a;

pptask->communication_in_b=ptask->communication_out_b;

}

}

A.19 execute.h

int execute (struct unpacked_op_mem *code,struct process_thread *pt);

A.20 execute.c

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<string.h>

#include<errno.h>

#include<ctype.h>

#include<gtk/gtk.h>

#include"main.h"

#include"list_utils.h"

//#include"parse2.h"

#include"pack.h"

//#include"init_game.h"

//#include"scheduler.h"

#include"execute.h"

#include"debug_output.h"

#include"x11_output.h"

void get_I_field(struct unpacked_op_mem *IR,int addr_mode,int val, int IP,int

ID,int *RRPA)

{

CAP. A WiCE SourceCode 164

� A.20 execute.c

int RPA,PIP;

struct unpacked_op_mem TMP;

if(addr_mode==op_IMM) {RPA=IP;*RRPA=RPA;unpack(RPA,IR);}

else

{

RPA=(IP+val)%size_arena;

if(addr_mode==op_B_IND_PREDEC)

{

unpack(RPA,&TMP);

(--TMP.b_val)%size_arena;

TMP.processID=ID;

pack2mem(RPA,&TMP);

RPA=(RPA+TMP.b_val)%size_arena;

}

if(addr_mode==op_A_IND_PREDEC)

{

unpack(RPA,&TMP);

(--TMP.a_val)%size_arena;

TMP.processID=ID;

pack2mem(RPA,&TMP);

RPA=(RPA+TMP.a_val)%size_arena;

}

if(addr_mode==op_B_IND)

{

unpack(RPA,&TMP);

RPA=(RPA+TMP.b_val)%size_arena;

}

if(addr_mode==op_A_IND)

{

unpack(RPA,&TMP);

RPA=(RPA+TMP.a_val)%size_arena;

}

if(addr_mode==op_B_IND_POSTINC)

{

unpack(RPA,&TMP);

PIP=RPA;

RPA=(RPA+TMP.b_val)%size_arena;

}

if(addr_mode==op_A_IND_POSTINC)

{

unpack(RPA,&TMP);

PIP=RPA;

RPA=(RPA+TMP.a_val)%size_arena;

}

unpack(RPA,IR);

CAP. A WiCE SourceCode 165

� A.20 execute.c

*RRPA=RPA;

if(addr_mode==op_B_IND_POSTINC)

{

TMP.processID=ID;

(++TMP.b_val)%size_arena;

pack2mem(PIP,&TMP);

}

if(addr_mode==op_A_IND_POSTINC)

{

TMP.processID=ID;

(++TMP.a_val)%size_arena;

pack2mem(PIP,&TMP);

}

}

}

int execute (struct unpacked_op_mem *code,struct process_thread *pt)

{

int alive,RPA,RPB;

struct unpacked_op_mem IRA,IRB;

struct process_task *ptask;

struct process_thread *new_thread;

alive=ALIVE;

code->processID=pt->ptask->ID;

get_I_field(&IRA,code->a_pref,code->a_val,pt->IP,code->processID,&RPA);

get_I_field(&IRB,code->b_pref,code->b_val,pt->IP,code->processID,&RPB);

print_ex_data(code,&IRA,&IRB,RPA,RPB,pt);

if(vo_mode>=VO_FRAMEBUFFER)

{

cell_refresh(pt->IP,pt);

}

if(output_mode==OUTPUT_DEBUG2 && (vo_mode==VO_NONE || b_log))

{

print_debug3();

}

switch(code->opcode)

{

case op_NOP:

pt->IP=(pt->IP+1)%size_arena;

break;

case op_DAT:

alive=DEAD;

break;

case op_MOV:

switch(code->mod)

CAP. A WiCE SourceCode 166

� A.20 execute.c

{

case op_A:

IRB.a_val=IRA.a_val;

IRB.processID=pt->ptask->ID;

pack2mem(RPB,&IRB);

break;

case op_B:

IRB.b_val=IRA.b_val;

IRB.processID=pt->ptask->ID;

pack2mem(RPB,&IRB);

break;

case op_AB:

IRB.b_val=IRA.a_val;

IRB.processID=pt->ptask->ID;

pack2mem(RPB,&IRB);

break;

case op_BA:

IRB.a_val=IRA.b_val;

IRB.processID=pt->ptask->ID;

pack2mem(RPB,&IRB);

break;

case op_F:

IRB.a_val=IRA.a_val;

IRB.b_val=IRA.b_val;

IRB.processID=pt->ptask->ID;

pack2mem(RPB,&IRB);

break;

case op_X:

IRB.a_val=IRA.b_val;

IRB.b_val=IRA.a_val;

IRB.processID=pt->ptask->ID;

pack2mem(RPB,&IRB);

break;

case op_I:

IRA.processID=pt->ptask->ID;

pack2mem(RPB,&IRA);

break;

default:

break;

}

pt->IP=(pt->IP+1)%size_arena;

if(vo_mode>=VO_FRAMEBUFFER)

{

cell_refresh(RPB,pt);

}

CAP. A WiCE SourceCode 167

� A.20 execute.c

break;

case op_ADD:

IRB.processID=pt->ptask->ID;

switch(code->mod)

{

case op_A:

IRB.a_val=(IRA.a_val+IRB.a_val)%size_arena;

break;

case op_B:

IRB.b_val=(IRA.b_val+IRB.b_val)%size_arena;

break;

case op_AB:

IRB.b_val=(IRA.a_val+IRB.b_val)%size_arena;

break;

case op_BA:

IRB.a_val=(IRA.b_val+IRB.a_val)%size_arena;

break;

case op_I:

case op_F:

IRB.a_val=(IRA.a_val+IRB.a_val)%size_arena;

IRB.b_val=(IRA.b_val+IRB.b_val)%size_arena;

break;

case op_X:

IRB.a_val=(IRA.b_val+IRB.b_val)%size_arena;

IRB.b_val=(IRA.a_val+IRB.a_val)%size_arena;

break;

default:

break;

}

pack2mem(RPB,&IRB);

pt->IP=(pt->IP+1)%size_arena;

if(vo_mode>=VO_FRAMEBUFFER)

{

cell_refresh(RPB,pt);

}

break;

case op_SUB:

IRB.processID=pt->ptask->ID;

switch(code->mod)

{

case op_A:

IRB.a_val=(IRB.a_val-IRA.a_val)%size_arena; //or maybe IRA-IRB ?!?!?to check

break;

case op_B:

IRB.b_val=(IRB.b_val-IRA.b_val)%size_arena;

CAP. A WiCE SourceCode 168

� A.20 execute.c

break;

case op_AB:

IRB.b_val=(IRB.b_val-IRA.a_val)%size_arena;

break;

case op_BA:

IRB.a_val=(IRB.a_val-IRA.b_val)%size_arena;

break;

case op_I:

case op_F:

IRB.a_val=(IRB.a_val-IRA.a_val)%size_arena;

IRB.b_val=(IRB.b_val-IRA.b_val)%size_arena;

break;

case op_X:

IRB.a_val=(IRB.b_val-IRA.b_val)%size_arena;

IRB.b_val=(IRB.a_val-IRA.a_val)&size_arena;

break;

default:

break;

}

pack2mem(RPB,&IRB);

pt->IP=(pt->IP+1)%size_arena;

if(vo_mode>=VO_FRAMEBUFFER)

{

cell_refresh(RPB,pt);

}

break;

case op_MUL:

IRB.processID=pt->ptask->ID;

switch(code->mod)

{

case op_A:

IRB.a_val=(IRA.a_val*IRB.a_val)%size_arena;

break;

case op_B:

IRB.b_val=(IRA.b_val*IRB.b_val)%size_arena;

break;

case op_AB:

IRB.b_val=(IRA.a_val*IRB.b_val)%size_arena;

break;

case op_BA:

IRB.a_val=(IRA.b_val*IRB.a_val)%size_arena;

break;

case op_I:

case op_F:

IRB.a_val=(IRA.a_val*IRB.a_val)%size_arena;

CAP. A WiCE SourceCode 169

� A.20 execute.c

IRB.b_val=(IRA.b_val*IRB.b_val)%size_arena;

break;

case op_X:

IRB.a_val=(IRA.b_val*IRB.b_val)%size_arena;

IRB.b_val=(IRA.a_val*IRB.a_val)%size_arena;

break;

default:

break;

}

pack2mem(RPB,&IRB);

pt->IP=(pt->IP+1)%size_arena;

if(vo_mode>=VO_FRAMEBUFFER)

{

cell_refresh(RPB,pt);

}

break;

case op_DIV:

IRB.processID=pt->ptask->ID;

switch(code->mod)

{

case op_A:

if(IRA.a_val==0) {alive=DEAD;} else

{IRB.a_val=(IRB.a_val/IRA.a_val)%size_arena;}

break;

case op_B:

if(IRA.b_val==0) {alive=DEAD;} else

{IRB.b_val=(IRB.b_val/IRA.b_val)%size_arena;}

break;

case op_AB:

if(IRA.a_val==0) {alive=DEAD;} else

{IRB.b_val=(IRB.b_val/IRA.a_val)%size_arena;}

break;

case op_BA:

if(IRA.b_val==0) {alive=DEAD;} else

{IRB.a_val=(IRB.a_val/IRA.b_val)%size_arena;}

break;

case op_F:

case op_I:

if((IRA.a_val==0)||(IRA.b_val==0)) {alive=DEAD;} else

{

IRB.a_val=(IRB.a_val/IRA.a_val)%size_arena;

IRB.b_val=(IRB.b_val/IRA.b_val)%size_arena;

}

break;

case op_X:

CAP. A WiCE SourceCode 170

� A.20 execute.c

if((IRA.a_val==0)||(IRA.b_val==0)) {alive=DEAD;} else

{

IRB.a_val=(IRB.b_val/IRA.b_val)%size_arena;

IRB.b_val=(IRB.a_val/IRA.a_val)%size_arena;

}

break;

default:

break;

}

pack2mem(RPB,&IRB);

pt->IP=(pt->IP+1)%size_arena;

if(vo_mode>=VO_FRAMEBUFFER)

{

cell_refresh(RPB,pt);

}

break;

case op_MOD:

IRB.processID=pt->ptask->ID;

switch(code->mod)

{

case op_A:

if(IRA.a_val==0) {alive=DEAD;} else

{IRB.a_val=(IRB.a_val%IRA.a_val)%size_arena;}

break;

case op_B:

if(IRA.b_val==0) {alive=DEAD;} else

{IRB.b_val=(IRB.b_val%IRA.b_val)%size_arena;}

break;

case op_AB:

if(IRA.a_val==0) {alive=DEAD;} else

{IRB.b_val=(IRB.b_val%IRA.a_val)%size_arena;}

break;

case op_BA:

if(IRA.b_val==0) {alive=DEAD;} else

{IRB.a_val=(IRB.a_val%IRA.b_val)%size_arena;}

break;

case op_F:

case op_I:

if((IRA.a_val==0)||(IRA.b_val==0)) {alive=DEAD;} else

{

IRB.a_val=(IRB.a_val%IRA.a_val)%size_arena;

IRB.b_val=(IRB.b_val%IRA.b_val)%size_arena;

}

break;

case op_X:

CAP. A WiCE SourceCode 171

� A.20 execute.c

if((IRA.a_val==0)||(IRA.b_val==0)) {alive=DEAD;} else

{

IRB.a_val=(IRB.b_val%IRA.b_val)%size_arena;

IRB.b_val=(IRB.a_val%IRA.a_val)%size_arena;

}

break;

default:

break;

}

pack2mem(RPB,&IRB);

pt->IP=(pt->IP+1)%size_arena;

if(vo_mode>=VO_FRAMEBUFFER)

{

cell_refresh(RPB,pt);

}

break;

case op_JMP:

pt->IP=RPA;

break;

case op_JMZ:

switch(code->mod)

{

case op_A:

case op_BA:

if(IRB.a_val==0) {pt->IP=RPA;} else {pt->IP=(pt->IP+1)%size_arena;}

break;

case op_B:

case op_AB:

if(IRB.b_val==0) {pt->IP=RPA;} else {pt->IP=(pt->IP+1)%size_arena;}

break;

case op_F:

case op_X:

case op_I:

if((IRB.a_val==0)&&(IRB.b_val==0))

{ pt->IP=RPA;} else {pt->IP=(pt->IP+1)%size_arena;}

break;

default:

break;

}

break;

case op_JMN:

switch(code->mod)

{

case op_A:

case op_BA:

CAP. A WiCE SourceCode 172

� A.20 execute.c

if(IRB.a_val!=0) {pt->IP=RPA;} else {pt->IP=(pt->IP+1)%size_arena;}

break;

case op_B:

case op_AB:

if(IRB.b_val!=0) {pt->IP=RPA;} else {pt->IP=(pt->IP+1)%size_arena;}

break;

case op_F:

case op_X:

case op_I:

if((IRB.a_val!=0)&&(IRB.b_val!=0))

{ pt->IP=RPA;} else {(pt->IP++)%size_arena;}

break;

default:

break;

}

break;

case op_DJN:

IRB.processID=pt->ptask->ID;

switch(code->mod)

{

case op_A:

case op_BA:

(IRB.a_val--)%size_arena;

if(IRB.a_val!=0) {pt->IP=RPA;}else{pt->IP=(pt->IP+1)%size_arena;}

break;

case op_B:

case op_AB:

(IRB.b_val--)%size_arena;

if(IRB.b_val!=0) {pt->IP=RPA;}else{pt->IP=(pt->IP+1)%size_arena;}

break;

case op_F:

case op_I:

case op_X:

(IRB.a_val--)%size_arena;

(IRB.b_val--)%size_arena;

if((IRB.a_val!=0)||(IRB.b_val!=0))

{pt->IP=RPA;}else{(pt->IP++)%size_arena;}

break;

default:

break;

}

pack2mem(RPB,&IRB);

break;

case op_CMP:

switch(code->mod)

CAP. A WiCE SourceCode 173

� A.20 execute.c

{

case op_A:

if(IRA.a_val==IRB.a_val)

{pt->IP=(pt->IP+2)%size_arena;}

else{pt->IP=(pt->IP+1)%size_arena;}

break;

case op_B:

if(IRA.a_val==IRB.a_val)

{pt->IP=(pt->IP+2)%size_arena;}

else{pt->IP=(pt->IP+1)%size_arena;}

break;

case op_AB:

if(IRA.a_val==IRB.b_val)

{pt->IP=(pt->IP+2)%size_arena;}

else{pt->IP=(pt->IP+1)%size_arena;}

break;

case op_BA:

if(IRA.b_val==IRB.a_val)

{pt->IP=(pt->IP+2)%size_arena;}

else{pt->IP=(pt->IP+1)%size_arena;}

break;

case op_F:

if((IRA.a_val==IRB.a_val)&&(IRA.b_val==IRB.b_val))

{pt->IP=(pt->IP+2)%size_arena;}

else{pt->IP=(pt->IP+1)%size_arena;}

break;

case op_X:

if((IRA.a_val==IRB.b_val)&&(IRA.b_val==IRB.a_val))

{pt->IP=(pt->IP+2)%size_arena;}

else{pt->IP=(pt->IP+1)%size_arena;}

break;

case op_I:

if((IRA.opcode==IRB.opcode)&&

(IRA.mod==IRB.mod)&&

(IRA.a_pref==IRB.b_pref)&&

(IRA.a_val==IRB.a_val)&&

(IRA.b_pref==IRB.b_pref)&&

(IRA.b_val==IRB.b_val))

{pt->IP=(pt->IP+2)%size_arena;}

else{pt->IP=(pt->IP+1)%size_arena;}

break;

default:

break;

}

break;

CAP. A WiCE SourceCode 174

� A.20 execute.c

case op_SLT:

switch(code->mod)

{

case op_A:

if(IRA.a_val<IRB.a_val)

{pt->IP=(pt->IP+2)%size_arena;}

else {pt->IP=(pt->IP+1)%size_arena;}

break;

case op_B:

if(IRA.b_val<IRB.b_val)

{pt->IP=(pt->IP+2)%size_arena;}

else {pt->IP=(pt->IP+1)%size_arena;}

break;

case op_AB:

if(IRA.a_val<IRB.b_val)

{pt->IP=(pt->IP+2)%size_arena;}

else {pt->IP=(pt->IP+1)%size_arena;}

break;

case op_BA:

if(IRA.b_val<IRB.a_val)

{pt->IP=(pt->IP+2)%size_arena;}

else {pt->IP=(pt->IP+1)%size_arena;}

break;

case op_F:

case op_I:

if((IRA.a_val<IRB.a_val)&&(IRA.b_val<IRB.b_val))

{pt->IP=(pt->IP+2)%size_arena;}

else {pt->IP=(pt->IP+1)%size_arena;}

break;

case op_X:

if((IRA.a_val<IRB.b_val)&&(IRA.b_val<IRB.a_val))

{pt->IP=(pt->IP+2)%size_arena;}

else {pt->IP=(pt->IP+1)%size_arena;}

break;

default:

break;

}

break;

case op_SPL:

//create new thread

ptask=pt->ptask;

if(ptask->n_threads<maxprocesses)

{

new_thread=(struct process_thread*)malloc(sizeof(struct process_thread));

if(new_thread==NULL) die("error creating the new thread");

CAP. A WiCE SourceCode 175

� A.20 execute.c

ptask->n_threads++;

new_thread->ptask=ptask;

new_thread->prev=NULL;

new_thread->next=NULL;

new_thread->communication_in_a=0;

new_thread->communication_out_a=0;

new_thread->communication_in_b=0;

new_thread->communication_out_b=0;

new_thread->IP=RPA;

// and resume to next instruction

pt->IP=(pt->IP+1)%size_arena;

// update gtk_view

if(vo_mode==VO_X11) gtk_update_warrior(ptask);

//set new process to go last in process task's queue (repeat the father first)

add_thread_rev(new_thread,ptask);

ptask->cur_thread=ptask->cur_thread->prev;

if(ptask->cur_thread==NULL) ptask->cur_thread=ptask->ultimo_thread;

}

break;

case op_CTOUT:

switch(code->mod)

{

case op_A:

pt->communication_out_a=IRA.a_val;

pt->communication_out_b=IRB.a_val;

break;

case op_B:

pt->communication_out_a=IRA.b_val;

pt->communication_out_b=IRB.b_val;

break;

case op_AB:

case op_F:

case op_I:

pt->communication_out_a=IRA.a_val;

pt->communication_out_b=IRB.b_val;

break;

case op_BA:

case op_X:

pt->communication_out_a=IRA.b_val;

pt->communication_out_b=IRB.a_val;

break;

default:

break;

}

CAP. A WiCE SourceCode 176

� A.20 execute.c

ctout(pt);

pt->IP=(pt->IP+1)%size_arena;

break;

case op_CTIN:

switch(code->mod)

{

case op_A:

IRA.a_val=pt->communication_out_a;

IRB.a_val=pt->communication_out_b;

break;

case op_B:

IRA.b_val=pt->communication_out_a;

IRB.b_val=pt->communication_out_b;

break;

case op_AB:

case op_F:

case op_I:

IRA.a_val=pt->communication_out_a;

IRB.b_val=pt->communication_out_b;

break;

case op_BA:

case op_X:

IRA.b_val=pt->communication_out_a;

IRB.a_val=pt->communication_out_b;

break;

default:

break;

}

pt->IP=(pt->IP+1)%size_arena;

if(vo_mode>=VO_FRAMEBUFFER)

{

cell_refresh(RPB,pt);

cell_refresh(RPA,pt);

}

break;

case op_CPOUT:

switch(code->mod)

{

case op_A:

pt->ptask->communication_out_a=IRA.a_val;

pt->ptask->communication_out_b=IRB.a_val;

break;

case op_B:

pt->ptask->communication_out_a=IRA.b_val;

CAP. A WiCE SourceCode 177

� A.20 execute.c

pt->ptask->communication_out_b=IRB.b_val;

break;

case op_AB:

case op_F:

case op_I:

pt->ptask->communication_out_a=IRA.a_val;

pt->ptask->communication_out_b=IRB.b_val;

break;

case op_BA:

case op_X:

pt->ptask->communication_out_a=IRA.b_val;

pt->ptask->communication_out_b=IRB.a_val;

break;

default:

break;

}

cpout(pt->ptask);

pt->IP=(pt->IP+1)%size_arena;

break;

case op_CPIN:

switch(code->mod)

{

case op_A:

IRA.a_val=pt->ptask->communication_out_a;

IRB.a_val=pt->ptask->communication_out_b;

break;

case op_B:

IRA.b_val=pt->ptask->communication_out_a;

IRB.b_val=pt->ptask->communication_out_b;

break;

case op_AB:

case op_F:

case op_I:

IRA.a_val=pt->ptask->communication_out_a;

IRB.b_val=pt->ptask->communication_out_b;

break;

case op_BA:

case op_X:

IRA.b_val=pt->ptask->communication_out_a;

IRB.a_val=pt->ptask->communication_out_b;

break;

default:

break;

CAP. A WiCE SourceCode 178

� A.21 debug_output.h

}

pt->IP=(pt->IP+1)%size_arena;

if(vo_mode>=VO_FRAMEBUFFER)

{

cell_refresh(RPB,pt);

cell_refresh(RPA,pt);

}

break;

default:

break;

}

// if(output_mode>=OUTPUT_DEBUG)

// {

// sprintf(out_str,"=>newIP=%d\n",pt->IP);

// if(vo_mode==VO_NONE && log_mode) fputs(out_str,fpout);

// //if(vo_mode==VO_FRAMEBUFFER);

// }

return alive;

}

A.21 debug_output.h

void print_ex_data(struct unpacked_op_mem *code,struct unpacked_op_mem

*IRA,struct unpacked_op_mem *IRB,int RPA,int RPB,struct process_thread *pt);

void cell_refresh(int addr,struct process_thread *pt);

void print_debug3(void);

A.22 debug_output.c

#include<stdio.h>

#include<unistd.h>

#include<stdlib.h>

#include<string.h>

#include<errno.h>

#include<ctype.h>

#include<gtk/gtk.h>

#include"main.h"

#include"list_utils.h"

//#include"parse2.h"

#include"pack.h"

//#include"init_game.h"

//#include"scheduler.h"

#include"execute.h"

#include"debug_output.h"

CAP. A WiCE SourceCode 179

� A.22 debug_output.c

#include"txt_output.h"

#include"x11_output.h"

extern void gtk_display_curr_instr(char *ss);

void get_str(struct unpacked_op_mem *code,char *m_op,char *m_apref,char

*m_bpref,char *m_mod)

{

static char *op_table[]={

"nop","1","dat","0","mov","2","add","3","sub","4","mul","5","div","6","mod",

"7","jmp","8",

"jmz","9","jmn","10","djn","11","spl","12","cmp","13","seq","14","sne","15",

"slt","16","ldp","17",

"stp","18","NULL","-1"

};

static char *pref_table[]={

"#","0","$","2","*","3","@","4","{","5","<","6","}","7",">","1","NULL","-1"

};

static char *mod_table[]={

"a","0","b","1","ab","2","ba","3","f","4","x","5","i","6","NULL","-1"

};

int n,rv;

for(n=1;;n+=2)

{

rv=atoi(op_table[n]);

if(rv==code->opcode) {strcpy(m_op,op_table[n-1]);break;}

}

for(n=1;;n+=2)

{

rv=atoi(pref_table[n]);

if(rv==code->a_pref) {strcpy(m_apref,pref_table[n-1]);break;}

}

for(n=1;;n+=2)

{

rv=atoi(pref_table[n]);

if(rv==code->b_pref) {strcpy(m_bpref,pref_table[n-1]);break;}

}

for(n=1;;n+=2)

{

rv=atoi(mod_table[n]);

if(rv==code->mod) {strcpy(m_mod,mod_table[n-1]);break;}

}

}

void print_ex_data(struct unpacked_op_mem *code,struct unpacked_op_mem

CAP. A WiCE SourceCode 180

� A.22 debug_output.c

*IRA,struct unpacked_op_mem *IRB,int RPA,int RPB,struct process_thread *pt)

{

char m_op[8],m_apref[5],m_bpref[5],m_mod[5];

int m_aval=0,m_bval=0;

if(output_mode>=OUTPUT_DEBUG2)

{

get_str(code,&m_op[0],&m_apref[0],&m_bpref[0],&m_mod[0]);

sprintf(out_str,"code:{proc=%d| %s %s %d,%s %d |IP=%d}

",code->processID,m_op,m_apref,code->a_val,m_bpref,code->b_val,pt->IP);

if((vo_mode==VO_NONE) /*&& (log_mode)*/)

{

fputs(out_str,fpout);

fputs("\n",fpout);

}

if(vo_mode==VO_FRAMEBUFFER) mvaddstr(sc_y+1+yd,0,out_str);

}

if(vo_mode==VO_FRAMEBUFFER)

{

get_str(code,&m_op[0],&m_apref[0],&m_bpref[0],&m_mod[0]);

sprintf(out_str,"code:{proc=%d| %s %s %d,%s %d |IP=%d}

",code->processID,m_op,m_apref,code->a_val,m_bpref,code->b_val,pt->IP);

mvaddstr(sc_y+1+yd,0,out_str);

}

if(vo_mode==VO_X11)

{

get_str(code,&m_op[0],&m_apref[0],&m_bpref[0],&m_mod[0]);

sprintf(out_str,"code:{proc=%d| %s %s %d,%s %d |IP=%d}

",code->processID,m_op,m_apref,code->a_val,m_bpref,code->b_val,pt->IP);

gtk_display_curr_instr(out_str);

}

}

void cell_refresh(int addr,struct process_thread *pt)

{

if(vo_mode==VO_FRAMEBUFFER) curses_cell_refresh(addr,pt);

if(vo_mode==VO_X11) x11_cell_refresh(addr,pt);

}

void print_debug3()

{

int count,x_pos,y_pos,col;

char car;

struct unpacked_op_mem mem;

for(count=0;count<size_arena;count++)

{

for(x_pos=0;x_pos<max_x;x_pos++)

{

CAP. A WiCE SourceCode 181

� A.22 debug_output.c

if(++count>size_arena) break;

unpack(count,&mem);

get_p_attr(mem.processID,&car,&col);

sprintf(out_str,"%c",car);

fputs(out_str,fpout);

}

sprintf(out_str,"\n");

fputs(out_str,fpout);

}

sprintf(out_str,"\n");

fputs(out_str,fpout);

}

CAP. A WiCE SourceCode 182

Appendix B

Terminology of Malicious Programs

B.1 Viruses

A virus is a program that is able to infect other programs by modifying them to
include a possibly evolved copy of itself. A virus needs a host program to infect. A
virus attacks a non-running copy of the program (the image on the disk).

B.2 Worms

Worms are network viruses, primarily replicating on networks. Usually a worm will
execute itself automatically on a remote machine without any extra help from a user.
Worms attack a running copy of a program. Worms are typically standalone applica-
tions without a host program.

B.2.1 Mailer and Mass-Media Worms

Mailers and mass-mailer worms comprise a special class of computer worms, which
send themselves in an e-mail.

B.2.2 Octopus

An octopus is a sophisticated kind of computer worm that exists as a set of programs
on more than one computer on a network. For example, head and tail copies are
installed on individual computers that communicate with each other to perform a
function.

B.2.3 Rabbits

A rabbit is a special computer worm that exists as a single copy of itself at any point in
time as it "jumps around" on the network hosts. Other researchers use the term rabbit

CAP. B Terminology of Malicious Programs 183

� B.3 Logic Bombs

to describe crafty, malicious applications that usually run themselves recursively to
�ll memory with their own copies and to slow down processing time consuming CPU
time. Such malicious code uses too much memory and thus can cause serious side
e�ects an a machine within other applications that are not prepared to work under
low-memory conditions and that unexpectedly cease functioning.

B.3 Logic Bombs

A logic bomb is a programmed malfunction of a legitimate application. An applica-
tion, for example, might delete itself from the disk after a couple of runs as a copy
protection scheme; a programmer might want to include some extra code to perform
a malicious action an a certain condition or on certain systems when the application
is used.

B.4 Trojan Horses

Perhaps the simpliest kind of malicious program is a Trojan horse. Trojan horses try
to appeal to and interest the user with some useful functionality to entice the user to
run the program. At run-time the program executes the declared functionality but
also some other hidden and malicious task.

B.4.1 Backdoors

A backdoor is a malicious hacker's tool of choice that allows remote connections to
system. Usually backdoors bypasses all security systems and give a direct access to
a system. A typical backdoor opens a network port (UDP/TCP) on the host when
it is executed. Then, the listening backdoor waits for a remote connection from the
attacker and allows the attacker to connect to the system.

B.5 Germs

Germs are �rst-generation viruses in a form that the virus cannot generate to its usual
infection process. Usually, when the virus is compiled for the �rst time, it exists in
a special form (is not a result of an infection) and does not have a host program
attached to it. Germs will not have the usual marks that most viruses use in the
second-generation form to �ag infected �les to avoid reinfecting an already infected
object. A germ of an encrypted or polymorphic virus is usually not encrypted but
is plain, readable code. Detecting Germs might need to be done di�erently from
detecting second, and later,-generation infections.

CAP. B Terminology of Malicious Programs 184

� B.6 Exploits

B.6 Exploits

Exploit code is speci�c to a single vulnerability or a set of vulnerabilities. Its goal is
to run a program on a (possibly remote, networked) system automatically or provide
some other form of more highly privileged access to the target system.

B.7 Downloaders

A downloader is yet another malicious program that installs a set of other items on a
machine that is under attack. Usually, a downloader is sent in e-mail, and when it is
executed, it downloads malicious content from Web sites or other location and then
extracts and runs its content.

B.8 Dialers

Dialers got their relatively early start during the heyday of dial-up connections to
bullettin board systems in homes. The concept driving a dialer is to make money for
the people behind the dialer by having its user call via premium-rate phone numbers.
Thus, the person who runs the dialer might know the intent of the application, but
the user is not aware of the charges.

B.9 Droppers

The original term refers to an "installer" for �rst-generation virus code. For example,
boot viruses that �rs exist as compiled �les in binary form are often installed in the
boot sector of a �oppy using a dropper. The dropper writes the germ code to the boot
sector of the diskette. Then the virus replicate on its own without ever generating
the dropper form again.

B.10 Injectors

Injectors are special kind of droppers that usually install virus code in memory. An
injector can be used to inject virus code in an active form on a disk interrupt handler.
Then, the �rst time a user accesses a diskette, the virus begins to replicate itself
normally. A special kind of injector is the network injector. Attackers also can use
legitimate utilities, such as NetCat, to inject code into the network. Injectors are
often used in a process called seeding. Seeding is a process that is used to inject virus
code to several remote systems to cause an initial outbreak that is large enough to
cause a quick epidemic.

CAP. B Terminology of Malicious Programs 185

� B.11 Kits (Virus Generators)

B.11 Kits (Virus Generators)

Virus writers developed kits, such as the Virus Creation Laboratory (VCL), to gener-
ate new computer viruses automatically, using a menu-based application. With such
tools, even novice users were able to develop harmful computer viruses without too
much background knowledge. The Dark Avanger's virus mutation engine (MtE) is
also able to generate polymorphics viruses.

B.12 Spammer Programs

Spammer programs are used to send unsolicited messages to Instant Messaging groups,
newsgroups, or many kind of mobile device in form of e-mail or cell phone SMS
messages. The primary motivation of spammers is to make money by generating
tra�c to Web sites. In addition, spam messages are often used to implement phishing
attacks. For example, you might receive an e-mail message asking you to visit your
bank's Web site and telling you that if you don't, they will disable your account.
There is a link in the e-mail, however, that forwards you to the fraudster. If you fall
victim to the attack, you might disclose personal information to the attacker on a
silver plate. The fraudster wants to get your credit card number, account number,
password, PIN, and other personal information to make money. In addition, you
might become the prime subject of an identity theft as well.

B.13 Flooders

Malicious hackers use �ooders to attack networked computer systems with an extra
load of network tra�c to carry out a denial of service (DoS) attack. When the Dos
attack is performed simultaneously from many compromised systems (so-called zombie
machines), the attack is called a distributed denial of service (DDoS) attack. Of
course, there are much more sophisticated DoS attacks including SYN �ood, packet
fragmentation attacks, and other (mis-)sequencing attacks, tra�c ampli�cation, or
tra�c de�ection, just to name the most common types.

B.14 Keyloggers

A keylogger captures on a compromised system, collecting sensitive information for
the attacker. Such sensitive information might include names, passwords, PINs, birth-
days, Social Security numbers, or credit card numbers.

CAP. B Terminology of Malicious Programs 186

� B.15 Rootkits

B.15 Rootkits

Rootkits are a special set of malicious hacker tools that are used after the attacker
has broken into a computer system and gained root-level access. Rootkits are used to
hide an attack and the system alteration after an attack. Usually attackers break into
a system with exploits and install modi�ed versions of common tools. Such rootkits
are called user-mode rootkits because the Trojanized application runs in user mode.
Modern rootkits corrupt directly the kernel.

B.16 Joke Programs

Joke programs are not malicious, as Alan Solomon (author of one of the most widely
used scanning engines today) once mentioned, "Whether a program should be classi-
�ed as a joke program or as a Trojan largely depends on the sense of humor of the
victim". Joke programs change or interrupt the normal behavior of your computer,
creating a general distraction or nuisance. Such programs can be considered harmful
in some sense. Consider, for example, a joke program that locks the system but never
unlocks it. Thus, computers cannot be stopped safely. As a result, important data
could be lost because it was never saved to the disk. Or worse, thee �le allocation
table could get corrupted, and the machine would become unbootable.

CAP. B Terminology of Malicious Programs 187

Bibliography

[SHLLCD] Kris Kaspersky, ShellCoder's Programming Uncovered, Alist 2005

[DBGG] Kris Kaspersky, Hacker Debugging Uncovered, Alist 2005

[AHO] Alfred V. Aho, Ravi Sethi, Je�rey D. Ullman, Compilers: Principles, Techniques,and
Tools, Addison Wesley 1988

[BOF] James C. Foster, Bu�er Over�ow Attacks, Syngress 2005

[VIR] Matteo Salin, I Virus dei Computer, Livana Editrice 1989

[SZOR] Peter Szor, Virus Research and Defense, Addison Wesley 2005

[NEUMNN] J. von Neunamm, A.W.Burks, Theory of self-reproducing automata, Univer-
sity of Illinois Press 1966

[LUDWG] M. Ludwig, The Little Black Book of Computer Viruses, American Eagle Pub-
lications 1998

[LDWAI] M. Ludwig, Computer Viruses as Arti�cial Life, American Eagle Publications
1998

[WNSKL] G. Winskel, The Formal Semantic of Programming Languages, The MIT Press
1993

[ADP] A. Pettorossi, Theory of Computation vol.I,II,III,IV, Aracne 2002

[PRPL] A. Pettorossi, Elements of computability, decidability and complexity, Aracne 2006

[LINSHLL] Steve Hanna, Shellcoding for Linux and Windows Tutorial, INTERNET AD-
DRESS: http://www.vividmachines.com/shellcode/shellcode.html

[WINSC] The Metasploit Project, Windows System Call Table (NT,2000,XP,2003,Vista),

INTERNET ADDRESS: http://www.metasploit.com/users/opcode/syscalls.html

[LINASM] Derick Swanepoel, Linux Assembly Tutorial, INTERNET ADDRESS:
http://www.�zik.itu.edu.tr/turhan/asm/mnasm.html

[LINASMELF] LiTle VxW, Asm Tutorial for Linux and Elf File Format, INTERNET AD-
DRESS: http://www.woodmann.com/0xf001/�lez/29A-8.015.txt

BIBLIOGRAPHY 188

BIBLIOGRAPHY

[ELFFMT] Brian Raiter, Executable and Linkable Format (ELF), INTERNET ADDRESS:
http://www.muppetlabs.com/ breadbox/software/ELF.txt

[APPL] Apple Inc.,Mac Os X ABI Mach-O File Format Reference, INTERNET ADDRESS:
http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html

[VIRTHRY] Leonard Adleman, An Abstract Theory of Computer Viruses, INTERNET AD-
DRESS: http://vx.netlux.org/lib/ala01.html

[CPTVIR] Guillaume Bonfante, Matthieu Kaczmarek, Jean-Yves Mario, Toward an Abstract
Computer Virology, INTERNET ADDRESS: http://vx.netlux.org/lib/agb00.html

[COHEN] Fred Cohen, Computer Viruses- Theory and Experiments, INTERNET AD-
DRESS: http://vx.netlux.org/lib/afc01.html

[CRWR] Stephen Beitzel, Annotated Draft of the Proposed 1994 Core War Standard, IN-
TERNET ADDRESS: http://www.koth.org/info/icws94.html

[REDREF] ICWS'94 draft, RedCode Reference, INTERNET ADDRESS:
http://www.koth.org/info/pmars-redcode-94.txt

[REDCDE] Ilmari Karonen, The beginner's guide to Redcode, INTERNET ADDRESS:
http://vyznev.net/corewar/guide.html

BIBLIOGRAPHY 189

	I Computer Viruses
	Introduction
	Genesis of Computer Viruses

	An Abstract Theory of Computer Viruses
	Turing Machines
	von Neumann's Theory of Self-Reproducing Automata
	Computational Domains
	Complete Partial Order (CPO)
	Lifting

	Operational Semantic of IMP
	Basic Virus Definitions
	An Operational Semantic of Computer Viruses
	A Denotational Semantic of Computer Viruses

	Computer Architecture Dependency
	CPU Dependency
	Operating System Dependency
	Operating System Version Dependency
	runtime method
	hard coded method

	File System Dependency
	Cluster Viruses in FAT file system
	HFS File System
	NTFS File System

	File Format Dependency
	COM Viruses on DOS
	EXE Viruses on DOS
	PE (Portable Executable) Viruses on Windows
	ELF Viruses on UNIX
	Mach-O Viruses on Mac OS X

	Interpreted Environment Dependency

	Classification of Infection strategies
	Boot Viruses
	Replacing the Boot Record without saving it
	Replacing the Boot Record making a copy of it
	Boot Viruses that mark sectors as BAD

	File Infection Techniques
	Overwriting Viruses
	Random Overwriting Viruses
	Appending Viruses
	Prepending Viruses
	Classic Parasitic Viruses
	Cavity Viruses
	Compressing Viruses
	Crypting Viruses
	Entry-Point Obscuring (EPO) Viruses

	Classification of In-Memory strategies
	Direct-Action Viruses
	Memory-Resident Viruses
	Stealth Viruses
	Viruses in Processes (in User Mode)
	Viruses in Kernel Mode

	Advanced Virus Techniques
	Armored Viruses
	Antidisassembly
	Antidebugging
	Antiheuristics
	Antiemulation
	Aggressive Retroviruses

	Polymorphic Viruses
	Encrypted Viruses
	Oligomorphic Viruses
	Polymorphic Viruses

	II Emulation Environments
	Viruses and Artificial Life
	Viruses as patterns in space-time
	Self-reproduction of viruses
	Information storage of a self-representation
	Virus metabolism
	Functional interactions with the viruses environment
	Interdependence of virus parts
	Virus stability under perturbations
	Virus evolution
	Growth
	Other behavior
	Concluding Comments

	The WiCE Language
	The Grammar
	Run-time Variables
	General Definitions
	Specific Definitions
	Instruction Set
	pseudo-instructions
	DAT
	MOV
	ADD
	SUB
	MUL
	DIV
	MOD
	JMP
	JMZ
	JMN
	DJN
	CMP
	SLT
	SPL
	CTIN
	CTOUT
	CPIN
	CPOUT

	Address Modes
	Immediate
	Direct
	Indirect
	Predecrement Indirect
	Postincrement Indirect

	Modifiers
	A
	B
	AB
	BA
	F
	X
	I

	The WiCE environment
	Using WiCE
	WiCE Description

	WiCE Internals
	Software Architecture
	the parser
	the compiler
	the initializer
	the scheduler
	the output

	WiCE SourceCode
	main.h
	main.c
	init_game.h
	init_game.c
	x11_output.h
	x11_output.c
	txt_output.h
	txt_output.c
	scheduler.h
	scheduler.c
	parse2.h
	parse2.c
	parse.h
	parse.c
	pack.h
	pack.c
	list_util.h
	list_utils.c
	execute.h
	execute.c
	debug_output.h
	debug_output.c

	Terminology of Malicious Programs
	Viruses
	Worms
	Mailer and Mass-Media Worms
	Octopus
	Rabbits

	Logic Bombs
	Trojan Horses
	Backdoors

	Germs
	Exploits
	Downloaders
	Dialers
	Droppers
	Injectors
	Kits (Virus Generators)
	Spammer Programs
	Flooders
	Keyloggers
	Rootkits
	Joke Programs

